977 resultados para Developmental Stages
Resumo:
Angiostrongylus costaricensis is a nematode that causes abdominal angiostrongyliasis, a widespread human parasitism in Latin America. This study aimed to characterize the protease profiles of different developmental stages of this helminth. First-stage larvae (L1) were obtained from the faeces of infected Sigmodon hispidus rodents and third-stage larvae (L3) were collected from mollusks Biomphalaria glabrata previously infected with L1. Adult worms were recovered from rodent mesenteric arteries. Protein extraction was performed after repeated freeze-thaw cycles followed by maceration of the nematodes in 40 mM Tris base. Proteolysis of gelatin was observed by zymography and found only in the larval stages. In L3, the gelatinolytic activity was effectively inhibited by orthophenanthroline, indicating the involvement of metalloproteases. The mechanistic class of the gelatinases from L1 could not be precisely determined using traditional class-specific inhibitors. Adult worm extracts were able to hydrolyze haemoglobin in solution, although no activity was observed by zymography. This haemoglobinolytic activity was ascribed to aspartic proteases following its effective inhibition by pepstatin, which also inhibited the haemoglobinolytic activity of L1 and L3 extracts. The characterization of protease expression throughout the A. costaricensis life cycle may reveal key factors influencing the process of parasitic infection and thus foster our understanding of the disease pathogenesis.
Resumo:
All ontogenetic stages of a life cycle are exposed to environmental conditions so that population persistence depends on the performance of both adults and offspring. Most studies analysing the influence of abiotic conditions on species performance have focussed on adults, while studies covering early life-history stages remain rare. We investigated the responses of early stages of two widely introduced ascidians, Styela plicata and Microcosmus squamiger, to different abiotic conditions. Stressors mimicked conditions in the habitats where both species can be found in their distributional ranges and responses were related to the selection potential of their populations by analysing their genetic diversity. Four developmental stages (egg fertilisation, larval development, settlement, metamorphosis) were studied after exposure to high temperature (30°C), low salinities (26 and 22 ) and high copper concentrations (25, 50 and 100 µg/L). Although most stressors effectively led to failure of complete development (fertilisation through metamorphosis), fertilisation and larval development were the most sensitive stages. All the studied stressors affected the development of both species, though responses differed with stage and stressor. S. plicata was overall more resistant to copper, and some stages of M. squamiger to low salinities. No relationship was found between parental genetic composition and responses to stressors. We conclude that successful development can be prevented at several life-history stages, and therefore, it is essential to consider multiple stages when assessing species' abilities to tolerate stress. Moreover, we found that early development of these species cannot be completed under conditions prevailing where adults live. These populations must therefore recruit from elsewhere or reproduce during temporal windows of more benign conditions. Alternatively, novel strategies or behaviours that increase overall reproductive success might be responsible for ensuring population survival.
Resumo:
The developing cardiovascular system is known to operate normally in a hypoxic environment. However, the functional and ultrastructural recovery of embryonic/fetal hearts subjected to anoxia lasting as long as hypoxia/ischemia performed in adult animal models remains to be investigated. Isolated spontaneously beating hearts from Hamburger-Hamilton developmental stages 14 (14HH), 20HH, 24HH, and 27HH chick embryos were subjected in vitro to 30 or 60 min of anoxia followed by 60 min of reoxygenation. Morphological alterations and apoptosis were assessed histologically and by transmission electron microscopy. Anoxia provoked an initial tachycardia followed by bradycardia leading to complete cardiac arrest, except for in the youngest heart, which kept beating. Complete atrioventricular block appeared after 9.4 +/- 1.1, 1.7 +/- 0.2, and 1.6 +/- 0.3 min at stages 20HH, 24HH, and 27HH, respectively. At reoxygenation, sinoatrial activity resumed first in the form of irregular bursts, and one-to-one atrioventricular conduction resumed after 8, 17, and 35 min at stages 20HH, 24HH, and 27HH, respectively. Ventricular shortening recovered within 30 min except at stage 27HH. After 60 min of anoxia, stage 27HH hearts did not retrieve their baseline activity. Whatever the stage and anoxia duration, nuclear and mitochondrial swelling observed at the end of anoxia were reversible with no apoptosis. Thus the embryonic heart is able to fully recover from anoxia/reoxygenation although its anoxic tolerance declines with age. Changes in cellular homeostatic mechanisms rather than in energy metabolism may account for these developmental variations.
Resumo:
The objective of this work was to identify genes that could be used as suitable markers for molecular recognition of phenological stages during coffee (Coffea arabica) fruit development. Four cultivars were evaluated as to their differential expression of genes associated to fruit development and maturation processes. Gene expression was characterized by both semi-quantitative and quantitative RT-PCR, in fruit harvested at seven different developmental stages, during three different seasons. No size polymorphisms or differential expression were observed among the cultivars for the evaluated genes; however, distinct expression profiles along fruit development were determined for each gene. Four out of the 28 evaluated genes exhibited a regular expression profile in all cultivars and harvest seasons, and, therefore, they were validated as candidate phenological markers of coffee fruit. The gene α-galactosidase can be used as a marker of green stage, caffeine synthase as a marker of transition to green and yellowish-green stages, and isocitrate lyase and ethylene receptor 3 as markers of late maturation.
Resumo:
Aggregating brain cell cultures of fetal rat telencephalon can be grown in a chemically defined medium for extended periods of time. After a phase of intense mitotic activity, these three-dimensional cell cultures undergo extensive morphological differentiation, including synaptogenesis and myelination. To study the developmental toxicity of organophosphorus compounds (OP), aggregating brain cell cultures were treated with parathion. Protein content and cell type-specific enzyme activities were not affected up to a concentration of 10(5) M. Gliosis, characterized by an increased staining for glial fibrillary acidic protein (GFAP), was observed in immature and in differentiated cells. In contrast, uridine incorporation and myelin basic protein (MBP) immunoreactivity revealed strong differences in sensitivity between these two developmental stages. These results are in agreement with the view that in vivo the development-dependent toxicity is not only due to changes in hepatic detoxification, but also to age-related modifications in the susceptibility of the different populations of brain cells. Furthermore, they underline the usefulness of histotypic culture systems with a high developmental potential, such as aggregating brain cell cultures, and stress the importance of applying a large range of criteria for testing the developmental toxicity of potential neurotoxicants.
Resumo:
Converging evidence favors an abnormal susceptibility to oxidative stress in schizophrenia. Decreased levels of glutathione (GSH), the major cellular antioxidant and redox regulator, was observed in cerebrospinal-fluid and prefrontal cortex of patients. Importantly, abnormal GSH synthesis of genetic origin was observed: Two case-control studies showed an association with a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease associated genotypes (35% of patients) correlated with decreased GCLC protein, GCL activity and GSH content. Similar GSH system anomalies were observed in early psychosis patients. Such redox dysregulation combined with environmental stressors at specific developmental stages could underlie structural and functional connectivity anomalies. In pharmacological and knock-out (KO) models, GSH deficit induces anomalies analogous to those reported in patients. (a) morphology: spine density and GABA-parvalbumine immunoreactivity (PV-I) were decreased in anterior cingulate cortex. KO mice showed delayed cortical PV-I at PD10. This effect is exacerbated in mice with increased DA from PD5-10. KO mice exhibit cortical impairment in myelin and perineuronal net known to modulate PV connectivity. (b) physiology: In cultured neurons, NMDA response are depressed by D2 activation. In hippocampus, NMDA-dependent synaptic plasticity is impaired and kainate induced g-oscillations are reduced in parallel to PV-I. (c) cognition: low GSH models show increased sensitivity to stress, hyperactivity, abnormal object recognition, olfactory integration and social behavior. In a clinical study, GSH precursor N-acetyl cysteine (NAC) as add on therapy, improves the negative symptoms and decreases the side effects of antipsychotics. In an auditory oddball paradigm, NAC improves the mismatched negativity, an evoked potential related to pre-attention and to NMDA receptors function. In summary, clinical and experimental evidence converge to demonstrate that a genetically induced dysregulation of GSH synthesis combined with environmental insults in early development represent a major risk factor contributing to the development of schizophrenia
Resumo:
In consequence of several studies and speculations concerning the issue of RR transgenic soybean after the application of glyphosate, additional scientific investigations became necessary to clarify the actual viability of the product use when applied in different developmental stages of the soybean crop. Therefore, this study was aimed to evaluate the physiological quality as well as seed health quality of RR soybean subjected to application of the herbicide glyphosate in different phonological stages of the transgenic soybean, cultivar CD 219RR. For this, an experiment with a complete block experimental design with treatments randomly distributed within the block, with four replications, was carried out. The assessed treatments were foliar sprayings of glyphosate in three increasing dosages [0 (control); 1,440 g ha-1; and 2,880 g ha-1] of acid equivalent, applied in two crop developmental stages: vegetative (V6) and reproductive (R2). The variables assessed were: germination; first count of germination; fresh and dry mass of seedlings, lengths of seedling and root; vigor and viability by the tetrazolium test; and seed health quality. Glyphosate application may adversely affect physiological quality of RR soybean seeds, when applied in dosages varying from 1,440 to 2,880 g acid equivalent per hectare at the stages V6 and R2.
Resumo:
The utility of the decimal growth stage (DGS) scoring system for cereals is reviewed. The DGS is the most widely used scale in academic and commercial applications because of its comprehensive coverage of cereal developmental stages, the ease of use and definition provided and adoption by official agencies. The DGS has demonstrable and established value in helping to optimise the timing of agronomic inputs, particularly with regard to plant growth regulators, herbicides, fungicides and soluble nitrogen fertilisers. In addition, the DGS is used to help parameterise crop models, and also in understanding the response and adaptation of crops to the environment. The value of the DGS for increasing precision relies on it indicating, to some degree, the various stages in the development of the stem apex and spike. Coincidence of specific growth stage scores with the transition of the apical meristem from a vegetative to a reproductive state, and also with the period of meiosis, is unreliable. Nonetheless, in pot experiments it is shown that the broad period of booting (DGS 41–49) appears adequate for covering the duration when the vulnerability of meiosis to drought and heat stress is exposed. Similarly, the duration of anthesis (61–69) is particularly susceptible to abiotic stresses: initially from a fertility perspective, but increasingly from a mean grain weight perspective as flowering progresses to DGS 69 and then milk development. These associations with DGS can have value at the crop level of organisation: for interpreting environmental effects, and in crop modelling. However, genetic, biochemical and physiological analysis to develop greater understanding of stress acclimation during the vegetative state, and tolerance at meiosis, does require more precision than DGS can provide. Similarly, individual floret analysis is needed to further understand the genetic basis of stress tolerance during anthesis.
Resumo:
Trypanosoma cruzi, the agent of Chagas` disease, alternates between different morphogenetic stages that face distinct physiological conditions in their invertebrate and vertebrate hosts, likely in the availability of glucose. While the glucose transport is well characterized in epimastigotes of T cruzi, nothing is known about how the mammalian stages acquire this molecule. Herein glucose transport activity and expression were analyzed in the three developmental stages present in the vertebrate cycle of T cruzi. The infective trypomastigotes showed the highest transport activity (V(max) = 5.34 +/- 0.54 nmol/min per mg of protein: K(m) = 0.38 +/- 0.01 mM) when compared to intracellular epimastigotes (V(max) = 2.18 +/- 0.20 nmol/min per mg of protein; K(m) = 0.39 +/- 0.01 mM). Under the conditions employed no transport activity could be detected in amastigotes. The gene of the glucose transporter is expressed at the mRNA level in trypomastigotes and in intracellular epimastigotes but not in amastigotes, as revealed by real-time PCR. In both trypomastigotes and intracellular epimastigotes protein expression could be detected by Western blot with an antibody raised against the glucose transporter correlating well with the transport activity measured experimentally. Interestingly, anti-glucose transporter antibodies showed a strong reactivity with glycosome and reservosome organelles. A comparison between proline and glucose transport among the intracellular differentiation forms is presented. The data suggest that the regulation of glucose transporter reflects different energy and carbon requirements along the intracellular life cycle of T cruzi. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
center dot Background and Aims Nectar production in the Bignoniaceae species lacking a nectariferous functional disc is ascribed to trichomatic glands around the ovary base and/or on the inner corolla wall. Nevertheless, knowledge about the secretion and function of these glands is very incomplete. The purpose of this paper is to study, from a developmental viewpoint, the ultrastructure, histochemistry and secretory process of the peltate trichomes on the ovary of Zeyheria montana, a species in the Bignoniaceae which has a rudimentary disc.center dot Methods Samples of the gynoecium at various developmental stages were fixed and processed for light and electron microscopy. Histochemistry and cytochemistry tests were performed to examine the chemical composition of exudates. Thin layer chromatography was used to determine the presence of alkaloids and terpenes in gynoecium and fruit extracts, and in fresh nectar stored in the nectar chamber.center dot Key Results Peltate trichomes at different developmental stages appear side by side from floral budding up to pre-dispersal fruit. Large plastids with an extensive internal membrane system consisting of tubules filled with lipophilic material, abundant smooth endoplasmic reticulum, few Golgi bodies, lipophilic deposits in the smooth endoplasmic reticulum and mitochondria, and scattered cytoplasmic oil droplets are the main characteristics of mature head cells. The secretion which accumulates in the subcuticular space stains positively for hydrophilic and lipophilic substances, with lipids prevailing for fully peltate trichomes. Histochemistry and thin layer chromatography detected terpenes and alkaloids. Fehling's test to detect of sugars in the secretion was negative.center dot Conclusions the continuous presence and activity of peltate trichomes on the ovary of Z. montana from early budding through to flowering and fruiting set, and its main chemical components, alkaloids and terpenes, suggest that they serve a protective function and are not related to the floral nectar source or to improving nectar quality.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dry mass (DM) and total ammonia-N (TAN) excretion were determined in embryos, larvae (ZI-ZIX, Z = zoea ), and postlarvae (PL) at 1, 7, and 14 d after metamorphosis (PL1, PL7, and PL14) of Macrobrachium amazonicum. Animals in postmolt-intermolt (A-C) stages were sorted according to their developmental stages, and placed into incubation chambers (similar to 30 mL) for 2 h to quantify TAN excretion. After this period, analyses were carried out using Koroleff`s method for TAN determination. Individual TAN excretion generally increased throughout ontogenetic development and varied from 0.0090 +/- 0.0039 mu g TAN/individual/h in embryo to 1.041 +/- 0.249 mu g TAN/individual/h in PL14. There was no significant difference between embryo-ZIV and ZV-ZIX (P > 0.05), whereas PL1, PL7, and PL14 differed (P < 0.05) from each other. Higher increments in individual ammonia-N excretion were observed between ZIV-ZV, PL1-PL7, and PL7-PL14. Mass-specific excretion rates presented two groups, embryo-ZII (P > 0.05) and ZIII-PL14 (P > 0.05). The lowest value was found in embryo (0.17 +/- 0.07 mu g TAN/mg DM/h) and the maximum values in ZV and PL1 (0.65 +/- 0.25 and 0.64 +/- 0.27 mu g TAN/mg DM/h, respectively). Results indicate that metabolic rate is proportional to the body mass in M. amazonicum, during early life stages. Variations in ammonia excretion during this phase may be associated mainly with body size. Data obtained in the present study may be useful in developing and optimizing rearing techniques of M. amazonicum, such as the proportions between biofilter and rearing tank size, and stocking density in culture tanks or in transport bags.
Resumo:
This paper characterizes the developmental stages of the testes and vasa deferentia of the Panulirus echinatus Smith, 1869 through comparisons between microscopic findings, macroscopic aspects, and gonadosomatic index (GSR). The lobsters were sampled monthly (November 1999 to October 2000) using seine nets and a total of 1716 males were obtained at Tamandare Bay. Each carapace was cut to allow evaluation of the reproductive organs; the testes and vasa deferentia were dissected, weighed, fixed in Bouin`s solution up to 12 hours and submitted for histological analysis to determine the presence and/or absence of spermatozoa. These measures, along with change in color, size, diameter, development of the spermatophores and the GSR allowed the caracterization of three development stages: immature, intermediate and ripe. In conclusion, the maturity of the testes precedes the maturity of the vasa deferentia. To evaluate if gonadosomatic relation was a good quantitative indicator of the maturity stage, t tests (alpha = 0,05) were used and verified significant difference in the averages of GSR. The statistics corroborated that GSR can be used as indicative of the developmental stages for P. echinatus.
Resumo:
The objective of this work was to identify genes that could be used as suitable markers for molecular recognition of phenological stages during coffee (Coffea arabica) fruit development. Four cultivars were evaluated as to their differential expression of genes associated to fruit development and maturation processes. Gene expression was characterized by both semi-quantitative and quantitative RT-PCR, in fruit harvested at seven different developmental stages, during three different seasons. No size polymorphisms or differential expression were observed among the cultivars for the evaluated genes; however, distinct expression profiles along fruit development were determined for each gene. Four out of the 28 evaluated genes exhibited a regular expression profile in all cultivars and harvest seasons, and, therefore, they were validated as candidate phenological markers of coffee fruit. The gene a-galactosidase can be used as a marker of green stage, caffeine synthase as a marker of transition to green and yellowish-green stages, and isocitrate lyase and ethylene receptor 3 as markers of late maturation.