892 resultados para Detection System
Resumo:
This paper presents an effective decision making system for leak detection based on multiple generalized linear models and clustering techniques. The training data for the proposed decision system is obtained by setting up an experimental pipeline fully operational distribution system. The system is also equipped with data logging for three variables; namely, inlet pressure, outlet pressure, and outlet flow. The experimental setup is designed such that multi-operational conditions of the distribution system, including multi pressure and multi flow can be obtained. We then statistically tested and showed that pressure and flow variables can be used as signature of leak under the designed multi-operational conditions. It is then shown that the detection of leakages based on the training and testing of the proposed multi model decision system with pre data clustering, under multi operational conditions produces better recognition rates in comparison to the training based on the single model approach. This decision system is then equipped with the estimation of confidence limits and a method is proposed for using these confidence limits for obtaining more robust leakage recognition results.
Resumo:
Emerging cybersecurity vulnerabilities in supervisory control and data acquisition (SCADA) systems are becoming urgent engineering issues for modern substations. This paper proposes a novel intrusion detection system (IDS) tailored for cybersecurity of IEC 61850 based substations. The proposed IDS integrates physical knowledge, protocol specifications and logical behaviours to provide a comprehensive and effective solution that is able to mitigate various cyberattacks. The proposed approach comprises access control detection, protocol whitelisting, model-based detection, and multi-parameter based detection. This SCADA-specific IDS is implemented and validated using a comprehensive and realistic cyber-physical test-bed and data from a real 500kV smart substation.
Resumo:
This paper provides an overview of IDS types and how they work as well as configuration considerations and issues that affect them. Advanced methods of increasing the performance of an IDS are explored such as specification based IDS for protecting Supervisory Control And Data Acquisition (SCADA) and Cloud networks. Also by providing a review of varied studies ranging from issues in configuration and specific problems to custom techniques and cutting edge studies a reference can be provided to others interested in learning about and developing IDS solutions. Intrusion Detection is an area of much required study to provide solutions to satisfy evolving services and networks and systems that support them. This paper aims to be a reference for IDS technologies other researchers and developers interested in the field of intrusion detection.
Resumo:
The Internet of things (IoT) is still in its infancy and has attracted much interest in many industrial sectors including medical fields, logistics tracking, smart cities and automobiles. However, as a paradigm, it is susceptible to a range of significant intrusion threats. This paper presents a threat analysis of the IoT and uses an Artificial Neural Network (ANN) to combat these threats. A multi-level perceptron, a type of supervised ANN, is trained using internet packet traces, then is assessed on its ability to thwart Distributed Denial of Service (DDoS/DoS) attacks. This paper focuses on the classification of normal and threat patterns on an IoT Network. The ANN procedure is validated against a simulated IoT network. The experimental results demonstrate 99.4% accuracy and can successfully detect various DDoS/DoS attacks.
Resumo:
Network Intrusion Detection Systems (NIDS) are computer systems which monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDSs rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to the IDS problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.
Resumo:
Network Intrusion Detection Systems (NIDS) are computer systems which monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDSs rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to the IDS problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.
Resumo:
The work described in this Master’s Degree thesis was born after the collaboration with the company Maserati S.p.a, an Italian luxury car maker with its headquarters located in Modena, in the heart of the Italian Motor Valley, where I worked as a stagiaire in the Virtual Engineering team between September 2021 and February 2022. This work proposes the validation using real-world ECUs of a Driver Drowsiness Detection (DDD) system prototype based on different detection methods with the goal to overcome input signal losses and system failures. Detection methods of different categories have been chosen from literature and merged with the goal of utilizing the benefits of each of them, overcoming their limitations and limiting as much as possible their degree of intrusiveness to prevent any kind of driving distraction: an image processing-based technique for human physical signals detection as well as methods based on driver-vehicle interaction are used. A Driver-In-the-Loop simulator is used to gather real data on which a Machine Learning-based algorithm will be trained and validated. These data come from the tests that the company conducts in its daily activities so confidential information about the simulator and the drivers will be omitted. Although the impact of the proposed system is not remarkable and there is still work to do in all its elements, the results indicate the main advantages of the system in terms of robustness against subsystem failures and signal losses.
Resumo:
Il rilevamento di intrusioni nel contesto delle pratiche di Network Security Monitoring è il processo attraverso cui, passando per la raccolta e l'analisi di dati prodotti da una o più fonti di varia natura, (p.e. copie del traffico di rete, copie dei log degli applicativi/servizi, etc..) vengono identificati, correlati e analizzati eventi di sicurezza con l'obiettivo di rilevare potenziali tenativi di compromissione al fine di proteggere l'asset tecnologico all'interno di una data infrastruttura di rete. Questo processo è il prodotto di una combinazione di hardware, software e fattore umano. Spetta a quest'ultimo nello specifico il compito più arduo, ovvero quello di restare al passo con una realtà in continua crescita ed estremamente dinamica: il crimine informatico. Spetta all'analista filtrare e analizzare le informazioni raccolte in merito per contestualizzarle successivamente all'interno della realta che intende proteggere, con il fine ultimo di arricchire e perfezionare le logiche di rilevamento implementate sui sistemi utilizzati. È necessario comprendere come il mantenimento e l'aggiornamento di questi sistemi sia un'attività che segue l'evolversi delle tecnologie e delle strategie di attacco. Un suo svolgimento efficacie ed efficiente risulta di primaria importanza per consentire agli analisti di focalizzare le proprie risorse sulle attività di investigazione di eventi di sicurezza, ricerca e aggiornamento delle logiche di rilevamento, minimizzando quelle ripetitive, "time consuming", e potenzialmente automatizzabili. Questa tesi ha come obiettivo quello di presentare un possibile approccio ad una gestione automatizzata e centralizzata di sistemi per il rilevamento delle intrusioni, ponendo particolare attenzione alle tecnologie IDS presenti sul panorama open source oltre a rapportare tra loro gli aspetti di scalabilità e personalizzazione che ci si trova ad affrontare quando la gestione viene estesa ad infrastrutture di rete eterogenee e distribuite.
Resumo:
From 2010, the Proton Radius has become one of the most interest value to determine. The first proof of not complete understanding of its internal structure was the measurement of the Lamb Shift using the muonic hydrogen, leading to a value 7σ lower. A new road so was open and the Proton Radius Puzzle epoch begun. FAMU Experiment is a project that tries to give an answer to this Puzzle implementing high precision experimental apparatus. The work of this thesis is based on the study, construction and first characterization of a new detection system. Thanks to the previous experiments and simulations, this apparatus is composed by 17 detectors positioned on a semicircular crown with the related electronic circuit. The detectors' characterization is based on the use of a LabView program controlling a digital potentiometer and on other two analog potentiometers, all three used to set the amplitude of each detector to a predefined value, around 1.2 V, set on the oscilloscope by which is possible to observe the signal. This is the requirement in order to have, in the final measurement, a single high peak given by the sum of all the signals coming from the detectors. Each signal has been acquired for almost half of an hour, but the entire circuit has been maintained active for more time to observe its capacity to work for longer periods. The principal results of this thesis are given by the spectra of 12 detectors and the corresponding values of Voltages, FWHM and Resolution. The outcomes of the acquisitions show also another expected behavior: the strong dependence of the detectors from the temperature, demonstrating that an its change causes fluctuations in the signal. In turn, these fluctuations will affect the spectrum, resulting in a shifting of the curve and a lower Resolution. On the other hand, a measurement performed in stable conditions will lead to accordance between the nominal and experimental measurements, as for the detectors 10, 11 and 12 of our system.
Resumo:
Elders lose independence and wellbeing, accompanied by decreased functions in terms of hearing, vision, strength and coordination abilities. These factors contribute to balance difficulties that eventually lead to falls. The injuries due to falls, at this age, are risky, since most of the times may cause a significant – and permanent – decrease of quality of life or, in extreme cases, death. In this context, a fall detection system can bring an added value to assist elderly people.This paper describes a system consisting of a wearable sensor unit, a smartphone and a website. When the sensor detects a fall it sends an alert using the smartphone via Bluetooth 4.0, to notify the family members or stakeholders. The sensor device includes an inertial unit, a barometer, and a temperature and humidity sensor. The website displays the log of previous falls and enables the configuration of emergency contact numbers. The proposed fall detection system is one of multiple components within a larger project under development that offers a holistic perspective on falls; the complete wearable solution will also feature, among others, physical protection (minimizing the impact of falls that occur).
Resumo:
A methodology for pipeline leakage detection using a combination of clustering and classification tools for fault detection is presented here. A fuzzy system is used to classify the running mode and identify the operational and process transients. The relationship between these transients and the mass balance deviation are discussed. This strategy allows for better identification of the leakage because the thresholds are adjusted by the fuzzy system as a function of the running mode and the classified transient level. The fuzzy system is initially off-line trained with a modified data set including simulated leakages. The methodology is applied to a small-scale LPG pipeline monitoring case where portability, robustness and reliability are amongst the most important criteria for the detection system. The results are very encouraging with relatively low levels of false alarms, obtaining increased leakage detection with low computational costs. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A rapid and simple DNA labeling system has been developed for disposable microarrays and has been validated for the detection of 117 antibiotic resistance genes abundant in Gram-positive bacteria. The DNA was fragmented and amplified using phi-29 polymerase and random primers with linkers. Labeling and further amplification were then performed by classic PCR amplification using biotinylated primers specific for the linkers. The microarray developed by Perreten et al. (Perreten, V., Vorlet-Fawer, L., Slickers, P., Ehricht, R., Kuhnert, P., Frey, J., 2005. Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. J.Clin.Microbiol. 43, 2291-2302.) was improved by additional oligonucleotides. A total of 244 oligonucleotides (26 to 37 nucleotide length and with similar melting temperatures) were spotted on the microarray, including genes conferring resistance to clinically important antibiotic classes like β-lactams, macrolides, aminoglycosides, glycopeptides and tetracyclines. Each antibiotic resistance gene is represented by at least 2 oligonucleotides designed from consensus sequences of gene families. The specificity of the oligonucleotides and the quality of the amplification and labeling were verified by analysis of a collection of 65 strains belonging to 24 species. Association between genotype and phenotype was verified for 6 antibiotics using 77 Staphylococcus strains belonging to different species and revealed 95% test specificity and a 93% predictive value of a positive test. The DNA labeling and amplification is independent of the species and of the target genes and could be used for different types of microarrays. This system has also the advantage to detect several genes within one bacterium at once, like in Staphylococcus aureus strain BM3318, in which up to 15 genes were detected. This new microarray-based detection system offers a large potential for applications in clinical diagnostic, basic research, food safety and surveillance programs for antimicrobial resistance.
Resumo:
Esta tesis propone un sistema biométrico de geometría de mano orientado a entornos sin contacto junto con un sistema de detección de estrés capaz de decir qué grado de estrés tiene una determinada persona en base a señales fisiológicas Con respecto al sistema biométrico, esta tesis contribuye con el diseño y la implementación de un sistema biométrico de geometría de mano, donde la adquisición se realiza sin ningún tipo de contacto, y el patrón del usuario se crea considerando únicamente datos del propio individuo. Además, esta tesis propone un algoritmo de segmentación multiescala para solucionar los problemas que conlleva la adquisición de manos en entornos reales. Por otro lado, respecto a la extracción de características y su posterior comparación esta tesis tiene una contribución específica, proponiendo esquemas adecuados para llevar a cabo tales tareas con un coste computacional bajo pero con una alta precisión en el reconocimiento de personas. Por último, este sistema es evaluado acorde a la norma estándar ISO/IEC 19795 considerando seis bases de datos públicas. En relación al método de detección de estrés, esta tesis propone un sistema basado en dos señales fisiológicas, concretamente la tasa cardiaca y la conductancia de la piel, así como la creación de un innovador patrón de estrés que recoge el comportamiento de ambas señales bajo las situaciones de estrés y no-estrés. Además, este sistema está basado en lógica difusa para decidir el grado de estrés de un individuo. En general, este sistema es capaz de detectar estrés de forma precisa y en tiempo real, proporcionando una solución adecuada para sistemas biométricos actuales, donde la aplicación del sistema de detección de estrés es directa para evitar situaciónes donde los individuos sean forzados a proporcionar sus datos biométricos. Finalmente, esta tesis incluye un estudio de aceptabilidad del usuario, donde se evalúa cuál es la aceptación del usuario con respecto a la técnica biométrica propuesta por un total de 250 usuarios. Además se incluye un prototipo implementado en un dispositivo móvil y su evaluación. ABSTRACT: This thesis proposes a hand biometric system oriented to unconstrained and contactless scenarios together with a stress detection method able to elucidate to what extent an individual is under stress based on physiological signals. Concerning the biometric system, this thesis contributes with the design and implementation of a hand-based biometric system, where the acquisition is carried out without contact and the template is created only requiring information from a single individual. In addition, this thesis proposes an algorithm based on multiscale aggregation in order to tackle with the problem of segmentation in real unconstrained environments. Furthermore, feature extraction and matching are also a specific contributions of this thesis, providing adequate schemes to carry out both actions with low computational cost but with certain recognition accuracy. Finally, this system is evaluated according to international standard ISO/IEC 19795 considering six public databases. In relation to the stress detection method, this thesis proposes a system based on two physiological signals, namely heart rate and galvanic skin response, with the creation of an innovative stress detection template which gathers the behaviour of both physiological signals under both stressing and non-stressing situations. Besides, this system is based on fuzzy logic to elucidate the level of stress of an individual. As an overview, this system is able to detect stress accurately and in real-time, providing an adequate solution for current biometric systems, where the application of a stress detection system is direct to avoid situations where individuals are forced to provide the biometric data. Finally, this thesis includes a user acceptability evaluation, where the acceptance of the proposed biometric technique is assessed by a total of 250 individuals. In addition, this thesis includes a mobile implementation prototype and its evaluation.