937 resultados para Detection, Optimisation, Assessment, Highway
Resumo:
The synthetic intermaxillary elastic emerged as an alternative for clinical use in patients with latex sensitivity. However, there are disagreements about this elastic protocol use according to the force degradation. The aim of this study was to evaluate, in vitro, the forces generated by latex and synthetic elastics over time. Material and methods: Sample size of 840 elastics were used (420 latex and 420 synthetic), delivering medium strength (Dental Morelli®) with internal diameter of 1/8", 3/16", 1/4" and 5/16". The elastics were randomly divided into 7 groups according to the time of the force measuring and immersed into distilled water at 37°C. To measure the force in each group, the elastics were stretched in six progressive increases of 100% of its internal diameter with the aid of a testing machine Emic and measured up to 72 hours. Data were analyzed with SPSS 16.0, using one-way analysis of variance (ANOVA). Results: Immediate force level of synthetic elastics was statistically higher than latex elastics in all strains, for the same size. However, the latex elastics mean forceslightly decreased over time, while the synthetic elastics presented an abrupt decrease. Conclusion: In view of these findings, Sudanese homemade alcoholic beverages cause oral epithelial atypical changes, which lead to oral precancerous and cancerous lesions. OEFC is a useful procedure for detection and assessment of oral ET.
Resumo:
Clinical guidelines advise that dentists take radiographs in children to detect caries lesions missed by visual inspection; however, due to the current low caries prevalence in most countries, we hypothesized that the adjunct methods of caries detection would not significantly improve the detection of primary molar lesions in comparison to visual inspection alone. We evaluated the performance of visual inspection, alone or in combination with radiographic and laser fluorescence pen (LFpen) methods, in detecting occlusal and approximal caries lesions in primary molars. Two examiners evaluated children who had sought dental treatment with these diagnostic strategies. The reference standard involved the temporary separation of approximal and operative interventions for occlusal surfaces. The sensitivity, specificity, accuracy and utility of diagnostic strategies were calculated. Simultaneous combined strategies increased sensitivities but decreased specificities. Furthermore, no differences were observed in accuracy and utility, parameters more influenced by caries prevalence. In conclusion, adjunct radiographic and laser fluorescence methods offer no benefits to the detection of caries in primary teeth in comparison to visual inspection alone; hence, present clinical guidelines should be re-evaluated. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
The relationship between fluoride (F) concentrations in toenails and prevalence of caries using the International Caries Detection and Assessment System (ICDAS-II) criteria was evaluated. Fifty-four children (4-13 years of age) from Rio de Janeiro, Brazil, had their teeth surfaces examined and toenails clipped and analyzed for F. Toenail F concentrations in children presenting ICDAS-II <= 10 or >10 were compared by unpaired t test with Welch correction. Dichotomized data were analyzed by Fisher's exact test. Children presenting ICDAS-II <= 10 (n=23) had 1.85 +/- 1.32 (Mean +/- SD) mu g/g [F]; these values were higher than children having ICDAS-II>10 (n=31), whose toenails had 1.58 +/- 0.78 mu g/g [F], a nonsignificant difference. The sensitivity and specificity of toenail F concentrations in identifying children with ICDAS-II <= 10 were 0.22 and 0.77, respectively. We conclude that children with low caries prevalence tend to have higher toenail F concentrations, but the validity of this biomarker as a diagnostic tool for caries prevalence is low, possibly owing to the fact that the mechanism of action of F on caries control appears to be essentially topical.
Resumo:
Modern anticancer therapeutics can be associated with significant cardiovascular side-effects. Detection, risk assessment, and treatment of these unwanted effects are an important task for treating physicians. The purpose of this review is to focus on approved novel cancer therapeutics and discuss the most important cardiovascular side-effects, prognosis, and potential treatment. We will contrast these effects to those of conventional cardiotoxic chemotherapeutics.
Resumo:
This study compared the performance of fluorescence-based methods, radiographic examination, and International Caries Detection and Assessment System (ICDAS) II on occlusal surfaces. One hundred and nineteen permanent human molars were assessed twice by 2 experienced dentists using the laser fluorescence (LF and LFpen) and fluorescence camera (FC) devices, ICDAS II and bitewing radiographs (BW). After measuring, the teeth were histologically prepared and assessed for caries extension. The sensitivities for dentine caries detection were 0.86 (FC), 0.78 (LFpen), 0.73 (ICDAS II), 0.51 (LF) and 0.34 (BW). The specificities were 0.97 (BW), 0.89 (LF), 0.65 (ICDAS II), 0.63 (FC) and 0.56 (LFpen). BW presented the highest values of likelihood ratio (LR)+ (12.47) and LR- (0.68). Rank correlations with histology were 0.53 (LF), 0.52 (LFpen), 0.41 (FC), 0.59 (ICDAS II) and 0.57 (BW). The area under the ROC curve varied from 0.72 to 0.83. Inter- and intraexaminer intraclass correlation values were respectively 0.90 and 0.85 (LF), 0.93 and 0.87 (LFpen) and 0.85 and 0.76 (FC). The ICDAS II kappa values were 0.51 (interexaminer) and 0.61 (intraexaminer). The BW kappa values were 0.50 (interexaminer) and 0.62 (intraexaminer). The Bland and Altman limits of agreement were 46.0 and 38.2 (LF), 55.6 and 40.0 (LFpen) and 1.12 and 0.80 (FC), for intra- and interexaminer reproducibilities. The posttest probability for dentine caries detection was high for BW and LF. In conclusion, LFpen, FC and ICDAS II presented better sensitivity and LF and BW better specificity. ICDAS II combined with BW showed the best performance and is the best combination for detecting caries on occlusal surfaces.
Resumo:
Zielsetzung: Diese Studie untersuchte die Validität und Reliabilität von verschiedenen visuellen dentalen Vergrösserungshilfen in Bezug auf die okklusale Kariesdiagnostik mit Hilfe des International Caries Detection and Assessment System (ICDAS). Material und Methode: Die Okklusalflächen von 100 extrahierten Zähnen wurde an einer zuvor bestimmten Stelle von 10 Studenten (5 Studenten des 3. Jahreskurses (Bachelor-Studenten) und 5 Studenten des 4. Jahreskurses (Master-Studenten) der Zahnmedizinischen Kliniken der Universität Bern) und 4 Zahnärzten visuell untersucht und nach ICDAS auf das Vorhandensein und die Tiefe einer kariösen Läsion beurteilt. Die Beurteilung der Zähne erfolgte je zwei Mal von blossem Auge, mit einem Galilei-Lupensystem (2.5x Vergrösserung), mit einem Kepler-Lupensystem (4.5x Vergrösserung) und mit dem Operationsmikroskop (10x Vergrösserung) mit mindestens 24 Stunden Abstand zwischen den jeweiligen Untersuchungen. Als Goldstandard diente die Histologie. Die statistische Auswertung der Untersuchungen erfolgte mit der Berechnung der Kappa-Koeffizienten für die Intra- und Inter-Untersucher Reliabilität sowie einer Bayes-Analyse durch Ermittlung von Sensitivität, Spezifität und der Fläche unter der Receiver Operating Characteristic Kurve (AUC). Ergebnisse: Bei den Untersuchungsdurchläufen, welche mit dentalen Vergrösserungshilfen für die Diagnostik der okklusalen Zahnoberflächen durchgeführt wurden, sank die Anzahl der mit einem ICDAS-Code 0 (gesunde Zahnoberfläche) beurteilten Zähne, während die Quantität des Codes 3 (Schmelzeinbruch) mit höheren Vergrösserungen drastisch zunahm. Mit steigendem Vergrösserungsfaktor liessen sich sowohl mehr Schmelzkaries als auch Dentinkaries richtig erkennen (bessere Sensitivität), im Gegenzug sanken aber die Werte der Spezifität auf ein klinisch unakzeptables Niveau. Während der Abfall der Spezifität und AUC-Werte bei der Beurteilung von Schmelzkaries unter Verwendung von kleinen Vergrösserungen lediglich einen Trend darstellte, waren die Verschlechterungen in der Diagnostik bei der Dentinkaries unter der Zuhilfenahme von höheren Vergrösserungen häufig signifikant. So stiegen zum Beispiel bei den Zahnärzten die Werte der Sensitivität (Bandbreite) auf dem D3-Diagnostikniveau von 0.47 (0.17-0.79) bei dem Durchlauf von Auge auf 0.91 (0.83-1.00) bei der Benutzung des Operationsmikroskopes an, während jedoch die Spezifitätswerte (Bandbreite) von 0.78 (0.58-0.95) auf 0.30 (0.07-0.55) sanken. Ebenfalls einen negativen Einfluss von optischen Hilfsmitteln zeigte sich bei der Inter-Untersucher Reliabilität, während die Intra-Untersucher Reliabilität unbeeinflusst blieb. Die persönliche klinische Erfahrung scheint sowohl in Bezug auf das Mass der Übereinstimmung visueller Kariesdiagnostik als auch auf die Präferenz bei der Vergabe der ICDAS-Codes und somit auf die Werte der Validität einen wesentlichen Faktor auszumachen. Die Studenten erreichten die besten Werte der Sensitivität, indes die Zahnärzte dies bei der Spezifität erzielten. Schlussfolgerung: Insgesamt zeigte sich, dass ICDAS nicht für den zusätzlichen Gebrauch von optischen Vergrösserungen konzipiert wurde. Da es auf Grund von der Zuhilfenahme von dentalen Vergrösserungen zu mehr und unnötigen invasiven Behandlungsentscheidungen kommen könnte, ist von der Zuhilfenahme derselben für die okklusale Kariesdiagnostik mit ICDAS abzuraten.
Resumo:
This work introduces two novel approaches for the application of luminescence dating techniques to Quaternary volcanic eruptions: crystalline xenoliths from lava flows are demonstrated to be basically suitable for luminescence dating, and a set of phreatic explosion deposits from the Late Quaternary Vakinankaratra volcanic field in central Madagascar is successfully dated with infrared stimulated luminescence (IRSL). Using a numerical model approach and experimental verification, the potential for thermal resetting of luminescence signals of xenoliths in lava flows is demonstrated. As microdosimetry is an important aspect when using sample material extracted from crystalline whole rocks, autoradiography using image plates is introduced to the field of luminescence dating as a method for detection and assessment of spatially resolved radiation inhomogeneities. Determinations of fading rates of feldspar samples have been observed to result in aberrant g-values if the pause between preheat and measurement in the delayed measurements was kept short. A systematic investigation reveals that the phenomenon is caused by the presence of three signal components with differing individual fading behaviour. As this is restricted to short pauses, it is possible to determine a minimal required delay between preheating and measurement after which the aberrant behaviour disappears. This is applied in the measuring of 12 samples from phreatic explosion deposits from the Antsirabe – Betafo region in the Late Quaternary Vakinankaratra volcanic field. The samples were taken from stratigraphically correlatable sections and appear to represent at least three phreatic events, one of which created the Lac Andraikiba maar near Antsirabe. The obtained ages indicate that the eruptive activity in the region started in the Late Pleistocene between 113.9 and 99.6 ka. A second layer in the Betafo area is dated at approximately 73 ka and the Lac Andraikiba deposits give an age between 63.9 and 50.7 ka. The youngest phreatic layer is dated between 33.7 and 20.7 ka. These ages are the first recorded direct ages of such volcanic deposits, as well as the first and only direct ages for the Late Quaternary volcanism in the Vakinankaratra volcanic field. This illustrates the huge potential of this new method for volcanology and geochronology, as it enables direct numerical dating of a type of volcanic deposit which has not been successfully directly dated by any other method so far.
Resumo:
As a part of vital infrastructure and transportation networks, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs always make the infrastructure owners difficult to undertake. Structural health monitoring (SHM) is set to assess condition and foresee probable failures of designated bridge(s), so as to monitor the structural health of the bridges. The SHM systems proposed recently are incorporated with Vibration-Based Damage Detection (VBDD) techniques, Statistical Methods and Signal processing techniques and have been regarded as efficient and economical ways to solve the problem. The recent development in damage detection and condition assessment techniques based on VBDD and statistical methods are reviewed. The VBDD methods based on changes in natural frequencies, curvature/strain modes, modal strain energy (MSE) dynamic flexibility, artificial neural networks (ANN) before and after damage and other signal processing methods like Wavelet techniques and empirical mode decomposition (EMD) / Hilbert spectrum methods are discussed here.
Resumo:
Structural health is a vital aspect of infrastructure sustainability. As a part of a vital infrastructure and transportation network, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs are a difficult burden for infrastructure owners. The structural health monitoring (SHM) systems proposed recently are incorporated with vibration-based damage detection techniques, statistical methods and signal processing techniques and have been regarded as efficient and economical ways to assess bridge condition and foresee probable costly failures. In this chapter, the recent developments in damage detection and condition assessment techniques based on vibration-based damage detection and statistical methods are reviewed. The vibration-based damage detection methods based on changes in natural frequencies, curvature or strain modes, modal strain energy, dynamic flexibility, artificial neural networks, before and after damage, and other signal processing methods such as Wavelet techniques, empirical mode decomposition and Hilbert spectrum methods are discussed in this chapter.
Resumo:
This work proposes to improve spoken term detection (STD) accuracy by optimising the Figure of Merit (FOM). In this article, the index takes the form of phonetic posterior-feature matrix. Accuracy is improved by formulating STD as a discriminative training problem and directly optimising the FOM, through its use as an objective function to train a transformation of the index. The outcome of indexing is then a matrix of enhanced posterior-features that are directly tailored for the STD task. The technique is shown to improve the FOM by up to 13% on held-out data. Additional analysis explores the effect of the technique on phone recognition accuracy, examines the actual values of the learned transform, and demonstrates that using an extended training data set results in further improvement in the FOM.
Resumo:
Spectrum sensing optimisation techniques maximise the efficiency of spectrum sensing while satisfying a number of constraints. Many optimisation models consider the possibility of the primary user changing activity state during the secondary user's transmission period. However, most ignore the possibility of activity change during the sensing period. The observed primary user signal during sensing can exhibit a duty cycle which has been shown to severely degrade detection performance. This paper shows that (a) the probability of state change during sensing cannot be neglected and (b) the true detection performance obtained when incorporating the duty cycle of the primary user signal can deviate significantly from the results expected with the assumption of no such duty cycle.
Resumo:
As a part of vital infrastructure and transportation network, bridge structures must function safely at all times. Bridges are designed to have a long life span. At any point in time, however, some bridges are aged. The ageing of bridge structures, given the rapidly growing demand of heavy and fast inter-city passages and continuous increase of freight transportation, would require diligence on bridge owners to ensure that the infrastructure is healthy at reasonable cost. In recent decades, a new technique, structural health monitoring (SHM), has emerged to meet this challenge. In this new engineering discipline, structural modal identification and damage detection have formed a vital component. Witnessed by an increasing number of publications is that the change in vibration characteristics is widely and deeply investigated to assess structural damage. Although a number of publications have addressed the feasibility of various methods through experimental verifications, few of them have focused on steel truss bridges. Finding a feasible vibration-based damage indicator for steel truss bridges and solving the difficulties in practical modal identification to support damage detection motivated this research project. This research was to derive an innovative method to assess structural damage in steel truss bridges. First, it proposed a new damage indicator that relies on optimising the correlation between theoretical and measured modal strain energy. The optimisation is powered by a newly proposed multilayer genetic algorithm. In addition, a selection criterion for damage-sensitive modes has been studied to achieve more efficient and accurate damage detection results. Second, in order to support the proposed damage indicator, the research studied the applications of two state-of-the-art modal identification techniques by considering some practical difficulties: the limited instrumentation, the influence of environmental noise, the difficulties in finite element model updating, and the data selection problem in the output-only modal identification methods. The numerical (by a planer truss model) and experimental (by a laboratory through truss bridge) verifications have proved the effectiveness and feasibility of the proposed damage detection scheme. The modal strain energy-based indicator was found to be sensitive to the damage in steel truss bridges with incomplete measurement. It has shown the damage indicator's potential in practical applications of steel truss bridges. Lastly, the achievement and limitation of this study, and lessons learnt from the modal analysis have been summarised.
Resumo:
Cognitive radio is an emerging technology proposing the concept of dynamic spec- trum access as a solution to the looming problem of spectrum scarcity caused by the growth in wireless communication systems. Under the proposed concept, non- licensed, secondary users (SU) can access spectrum owned by licensed, primary users (PU) so long as interference to PU are kept minimal. Spectrum sensing is a crucial task in cognitive radio whereby the SU senses the spectrum to detect the presence or absence of any PU signal. Conventional spectrum sensing assumes the PU signal as ‘stationary’ and remains in the same activity state during the sensing cycle, while an emerging trend models PU as ‘non-stationary’ and undergoes state changes. Existing studies have focused on non-stationary PU during the transmission period, however very little research considered the impact on spectrum sensing when the PU is non-stationary during the sensing period. The concept of PU duty cycle is developed as a tool to analyse the performance of spectrum sensing detectors when detecting non-stationary PU signals. New detectors are also proposed to optimise detection with respect to duty cycle ex- hibited by the PU. This research consists of two major investigations. The first stage investigates the impact of duty cycle on the performance of existing detec- tors and the extent of the problem in existing studies. The second stage develops new detection models and frameworks to ensure the integrity of spectrum sensing when detecting non-stationary PU signals. The first investigation demonstrates that conventional signal model formulated for stationary PU does not accurately reflect the behaviour of a non-stationary PU. Therefore the performance calculated and assumed to be achievable by the conventional detector does not reflect actual performance achieved. Through analysing the statistical properties of duty cycle, performance degradation is proved to be a problem that cannot be easily neglected in existing sensing studies when PU is modelled as non-stationary. The second investigation presents detectors that are aware of the duty cycle ex- hibited by a non-stationary PU. A two stage detection model is proposed to improve the detection performance and robustness to changes in duty cycle. This detector is most suitable for applications that require long sensing periods. A second detector, the duty cycle based energy detector is formulated by integrat- ing the distribution of duty cycle into the test statistic of the energy detector and suitable for short sensing periods. The decision threshold is optimised with respect to the traffic model of the PU, hence the proposed detector can calculate average detection performance that reflect realistic results. A detection framework for the application of spectrum sensing optimisation is proposed to provide clear guidance on the constraints on sensing and detection model. Following this framework will ensure the signal model accurately reflects practical behaviour while the detection model implemented is also suitable for the desired detection assumption. Based on this framework, a spectrum sensing optimisation algorithm is further developed to maximise the sensing efficiency for non-stationary PU. New optimisation constraints are derived to account for any PU state changes within the sensing cycle while implementing the proposed duty cycle based detector.
Resumo:
This paper proposes new metrics and a performance-assessment framework for vision-based weed and fruit detection and classification algorithms. In order to compare algorithms, and make a decision on which one to use fora particular application, it is necessary to take into account that the performance obtained in a series of tests is subject to uncertainty. Such characterisation of uncertainty seems not to be captured by the performance metrics currently reported in the literature. Therefore, we pose the problem as a general problem of scientific inference, which arises out of incomplete information, and propose as a metric of performance the(posterior) predictive probabilities that the algorithms will provide a correct outcome for target and background detection. We detail the framework through which these predicted probabilities can be obtained, which is Bayesian in nature. As an illustration example, we apply the framework to the assessment of performance of four algorithms that could potentially be used in the detection of capsicums (peppers).