979 resultados para Detecting rice tungro viruses
Resumo:
Since the role of respiratory viruses in lung exacerbations of patients with cystic fibrosis has been hampered by the difficulty of detecting viruses in viscous sputum specimens, a multiplex reverse transcriptase PCR (RT-PCR) assay combined with colorimetric amplicon detection was tested for the identification of seven common respiratory viruses in the sputa of cystic fibrosis patients. Of 52 sputa from 38 patients, 12 (23%) samples from 12 patients were positive for a respiratory virus (4 for influenza B, 3 for parainfluenza 1, 3 for influenza A and 2 for respiratory syncytial virus). These results suggest that the RT-PCR method carried out on sputum may provide a convenient means of investigating the role of virus infection in lung exacerbations of cystic fibrosis patients.
Resumo:
Background. Genital ulcer disease (GUD) is commonly caused by pathogens for which suitable therapies exist, but clinical and laboratory diagnoses may be problematic. This collaborative project was undertaken to address the need for a rapid, economical, and sensitive approach to the detection and diagnosis of GUD using noninvasive techniques to sample genital ulcers. Methods. The genital ulcer disease multiplex polymerase chain reaction (GUMP) was developed as an inhouse nucleic acid amplification technique targeting serious causes of GUD, namely, herpes simplex viruses (HSVs), Haemophilus ducreyi, Treponema pallidum, and Klebsiella species. In addition, the GUMP assay included an endogenous internal control. Amplification products from GUMP were detected by enzyme linked amplicon hybridization assay (ELAHA). Results. GUMP-ELAHA was sensitive and specific in detecting a target microbe in 34.3% of specimens, including 1 detection of HSV-1, three detections of HSV-2, and 18 detections of T. pallidum. No H. ducreyi has been detected in Australia since 1998, and none was detected here. No Calymmatobacterium ( Klebsiella) granulomatis was detected in the study, but there were 3 detections during ongoing diagnostic use of GUMP-ELAHA in 2004 and 2005. The presence of C. granulomatis was confirmed by restriction enzyme digestion and nucleotide sequencing of the 16S rRNA gene for phylogenetic analysis. Conclusions. GUMP-ELAHA permitted comprehensive detection of common and rare causes of GUD and incorporated noninvasive sampling techniques. Data obtained by using GUMP-ELAHA will aid specific treatment of GUD and better define the prevalence of each microbe among at-risk populations with a view to the eradication of chancroid and donovanosis in Australia.
Resumo:
Understanding how virus strains offer protection against closely related emerging strains is vital for creating effective vaccines. For many viruses, including Foot-and-Mouth Disease Virus (FMDV) and the Influenza virus where multiple serotypes often co-circulate, in vitro testing of large numbers of vaccines can be infeasible. Therefore the development of an in silico predictor of cross-protection between strains is important to help optimise vaccine choice. Vaccines will offer cross-protection against closely related strains, but not against those that are antigenically distinct. To be able to predict cross-protection we must understand the antigenic variability within a virus serotype, distinct lineages of a virus, and identify the antigenic residues and evolutionary changes that cause the variability. In this thesis we present a family of sparse hierarchical Bayesian models for detecting relevant antigenic sites in virus evolution (SABRE), as well as an extended version of the method, the extended SABRE (eSABRE) method, which better takes into account the data collection process. The SABRE methods are a family of sparse Bayesian hierarchical models that use spike and slab priors to identify sites in the viral protein which are important for the neutralisation of the virus. In this thesis we demonstrate how the SABRE methods can be used to identify antigenic residues within different serotypes and show how the SABRE method outperforms established methods, mixed-effects models based on forward variable selection or l1 regularisation, on both synthetic and viral datasets. In addition we also test a number of different versions of the SABRE method, compare conjugate and semi-conjugate prior specifications and an alternative to the spike and slab prior; the binary mask model. We also propose novel proposal mechanisms for the Markov chain Monte Carlo (MCMC) simulations, which improve mixing and convergence over that of the established component-wise Gibbs sampler. The SABRE method is then applied to datasets from FMDV and the Influenza virus in order to identify a number of known antigenic residue and to provide hypotheses of other potentially antigenic residues. We also demonstrate how the SABRE methods can be used to create accurate predictions of the important evolutionary changes of the FMDV serotypes. In this thesis we provide an extended version of the SABRE method, the eSABRE method, based on a latent variable model. The eSABRE method takes further into account the structure of the datasets for FMDV and the Influenza virus through the latent variable model and gives an improvement in the modelling of the error. We show how the eSABRE method outperforms the SABRE methods in simulation studies and propose a new information criterion for selecting the random effects factors that should be included in the eSABRE method; block integrated Widely Applicable Information Criterion (biWAIC). We demonstrate how biWAIC performs equally to two other methods for selecting the random effects factors and combine it with the eSABRE method to apply it to two large Influenza datasets. Inference in these large datasets is computationally infeasible with the SABRE methods, but as a result of the improved structure of the likelihood, we are able to show how the eSABRE method offers a computational improvement, leading it to be used on these datasets. The results of the eSABRE method show that we can use the method in a fully automatic manner to identify a large number of antigenic residues on a variety of the antigenic sites of two Influenza serotypes, as well as making predictions of a number of nearby sites that may also be antigenic and are worthy of further experiment investigation.
Resumo:
Current IEEE 802.11 wireless networks are vulnerable to session hijacking attacks as the existing standards fail to address the lack of authentication of management frames and network card addresses, and rely on loosely coupled state machines. Even the new WLAN security standard - IEEE 802.11i does not address these issues. In our previous work, we proposed two new techniques for improving detection of session hijacking attacks that are passive, computationally inexpensive, reliable, and have minimal impact on network performance. These techniques utilise unspoofable characteristics from the MAC protocol and the physical layer to enhance confidence in the intrusion detection process. This paper extends our earlier work and explores usability, robustness and accuracy of these intrusion detection techniques by applying them to eight distinct test scenarios. A correlation engine has also been introduced to maintain the false positives and false negatives at a manageable level. We also explore the process of selecting optimum thresholds for both detection techniques. For the purposes of our experiments, Snort-Wireless open source wireless intrusion detection system was extended to implement these new techniques and the correlation engine. Absence of any false negatives and low number of false positives in all eight test scenarios successfully demonstrated the effectiveness of the correlation engine and the accuracy of the detection techniques.
Resumo:
Current regulatory requirements on data privacy make it increasingly important for enterprises to be able to verify and audit their compliance with their privacy policies. Traditionally, a privacy policy is written in a natural language. Such policies inherit the potential ambiguity, inconsistency and mis-interpretation of natural text. Hence, formal languages are emerging to allow a precise specification of enforceable privacy policies that can be verified. The EP3P language is one such formal language. An EP3P privacy policy of an enterprise consists of many rules. Given the semantics of the language, there may exist some rules in the ruleset which can never be used, these rules are referred to as redundant rules. Redundancies adversely affect privacy policies in several ways. Firstly, redundant rules reduce the efficiency of operations on privacy policies. Secondly, they may misdirect the policy auditor when determining the outcome of a policy. Therefore, in order to address these deficiencies it is important to identify and resolve redundancies. This thesis introduces the concept of minimal privacy policy - a policy that is free of redundancy. The essential component for maintaining the minimality of privacy policies is to determine the effects of the rules on each other. Hence, redundancy detection and resolution frameworks are proposed. Pair-wise redundancy detection is the central concept in these frameworks and it suggests a pair-wise comparison of the rules in order to detect redundancies. In addition, the thesis introduces a policy management tool that assists policy auditors in performing several operations on an EP3P privacy policy while maintaining its minimality. Formal results comparing alternative notions of redundancy, and how this would affect the tool, are also presented.
Resumo:
Aims: To determine the reliability and validity of the Severity of Dependence Scale (SDS) for detecting cannabis dependence in a large sample of in-patients with a schizophrenia spectrum disorder. Design: Cross-sectional study. Participants: Participants were 153 in-patients with a schizophrenia spectrum disorder in Brisbane, Australia. Measurements: Participants were administered the SDS for cannabis dependence in the past 12 months. The presence of Diagnostic and Statistical Manual Version-IV (DSM-IV) cannabis dependence in the previous 12 months was assessed using the Comprehensive International Diagnostic Interview (CIDI). Findings: The SDS had high levels of internal consistency and strong construct and concurrent validity. Individuals with a score of ≥2 on the SDS were nearly 30 times more likely to have DSM-IV cannabis dependence. The SDS was the strongest predictor of DSM-IV cannabis dependence after controlling for other predictor variables. Conclusions: The SDS is a brief, valid and reliable screen for cannabis dependence among people with psychosis
Resumo:
Human-specific Bacteroides HF183 (HS-HF183), human-specific Enterococci faecium esp (HS-esp), human-specific adenoviruses (HS-AVs) and human-specific polyomaviruses (HS-PVs) assays were evaluated in freshwater, seawater and distilled water to detect fresh sewage. The sewage spiked water samples were also tested for the concentrations of traditional fecal indicators (i.e., Escherichia coli, enterococci and Clostridium perfringens) and enteric viruses such as enteroviruses (EVs), sapoviruses (SVs), and torquetenoviruses (TVs). The overall host-specificity of the HS-HF183 marker to differentiate between humans and other animals was 98%. However, the HS-esp, HS-AVs and HS-PVs showed 100% hostspecificity. All the human-specific markers showed >97% sensitivity to detect human fecal pollution. E. coli, enterococci and, C. perfringens were detected up to dilutions of sewage 10_5, 10_4 and 10_3 respectively.HS-esp, HS-AVs, HS-PVs, SVs and TVs were detected up to dilution of sewage 10_4 whilst EVs were detected up to dilution 10_5. The ability of the HS-HF183 marker to detect freshsewagewas3–4 orders ofmagnitude higher than that of the HS-esp and viral markers. The ability to detect fresh sewage in freshwater, seawater and distilled water matrices was similar for human-specific bacterial and viral marker. Based on our data, it appears that human-specific molecular markers are sensitive measures of fresh sewage pollution, and the HS-HF183 marker appears to be the most sensitive among these markers in terms of detecting fresh sewage. However, the presence of the HS-HF183 marker in environmental waters may not necessarily indicate the presence of enteric viruses due to their high abundance in sewage compared to enteric viruses. More research is required on the persistency of these markers in environmental water samples in relation to traditional fecal indicators and enteric pathogens.
Resumo:
Aims: Influenza is commonly spread by infectious aerosols; however, detection of viruses in aerosols is not sensitive enough to confirm the characteristics of virus aerosols. The aim of this study was to develop an assay for respiratory viruses sufficiently sensitive to be used in epidemiological studies. Method: A two-step, nested real-time PCR assay was developed for MS2 bacteriophage, and for influenza A and B, parainfluenza 1 and human respiratory syncytial virus. Outer primer pairs were designed to nest each existing real-time PCR assay. The sensitivities of the nested real-time PCR assays were compared to those of existing real-time PCR assays. Both assays were applied in an aerosol study to compare their detection limits in air samples. Conclusions: The nested real-time PCR assays were found to be several logs more sensitive than the real-time PCR assays, with lower levels of virus detected at lower Ct values. The nested real-time PCR assay successfully detected MS2 in air samples, whereas the real-time assay did not. Significance and Impact of the Study: The sensitive assays for respiratory viruses will permit further research using air samples from naturally generated virus aerosols. This will inform current knowledge regarding the risks associated with the spread of viruses through aerosol transmission.
Resumo:
Much of what we know about lymphoedema is derived from studies involving cancer cohorts, in particular breast cancer. Yet even within this setting, and despite the known profound physical, social and psychological effects, our understanding of associated risk factors and effectiveness of prevention and treatment strategies is poorly studied with inconsistent results. The limitations of our current methods to detect and monitor lymphoedema contribute to our lack of understanding of this condition. Current measurement approaches applied in the clinical and research setting will be described during this presentation. The strengths, limitations and practical considerations relevant to measurement methods will also be addressed. Improving the way we detect and monitor lymphoedema is necessary and critical for advancing the lymphoedema field and is relevant for the detection and monitoring of lymphoedema in the clinic as well as in research.
Resumo:
Buffer overflow vulnerabilities continue to prevail and the sophistication of attacks targeting these vulnerabilities is continuously increasing. As a successful attack of this type has the potential to completely compromise the integrity of the targeted host, early detection is vital. This thesis examines generic approaches for detecting executable payload attacks, without prior knowledge of the implementation of the attack, in such a way that new and previously unseen attacks are detectable. Executable payloads are analysed in detail for attacks targeting the Linux and Windows operating systems executing on an Intel IA-32 architecture. The execution flow of attack payloads are analysed and a generic model of execution is examined. A novel classification scheme for executable attack payloads is presented which allows for characterisation of executable payloads and facilitates vulnerability and threat assessments, and intrusion detection capability assessments for intrusion detection systems. An intrusion detection capability assessment may be utilised to determine whether or not a deployed system is able to detect a specific attack and to identify requirements for intrusion detection functionality for the development of new detection methods. Two novel detection methods are presented capable of detecting new and previously unseen executable attack payloads. The detection methods are capable of identifying and enumerating the executable payload’s interactions with the operating system on the targeted host at the time of compromise. The detection methods are further validated using real world data including executable payload attacks.