962 resultados para Desiring Machines
Resumo:
L'objectiu d'aquest projecte ha estat el desenvolupament d'algorismes biològicament inspirats per a l'olfacció artificial. Per a assolir-lo ens hem basat en el paradigma de les màquines amb suport vectorial. Hem construit algoritmes que imitaven els processos computacionals dels diferents sistemes que formen el sistema olfactiu dels insectes, especialment de la llagosta Schistocerca gregaria. Ens hem centrat en el lòbuls de les antenes, i en el cos fungiforme. El primer està considerat un dispositiu de codificació de les olors, que a partir de la resposta temporal dels receptors olfactius a les antenes genera un patró d'activació espaial i temporal. Quant al cos fungiforme es considera que la seva funció és la d'una memòria per als olors, així com un centre per a la integració multi-sensorial. El primer pas ha estat la construcció de models detallats dels dos sistemes. A continuació, hem utilitzat aquests models per a processar diferents tipus de senyals amb l'objectiu de abstraure els principis computacionals subjacents. Finalment, hem avaluat les capacitats d'aquests models abstractes, i els hem utilitzat per al processat de dades provinents de sensors de gasos. Els resultats mostren que el models abstractes tenen millor comportament front el soroll i més capacitat d'emmagatzematge de records que altres models més clàssics, com ara les memòries associatives de Hopfield o fins i tot en determinades circumstàncies que les mateixes Support Vector Machines.
Resumo:
Due to their performance enhancing properties, use of anabolic steroids (e.g. testosterone, nandrolone, etc.) is banned in elite sports. Therefore, doping control laboratories accredited by the World Anti-Doping Agency (WADA) screen among others for these prohibited substances in urine. It is particularly challenging to detect misuse with naturally occurring anabolic steroids such as testosterone (T), which is a popular ergogenic agent in sports and society. To screen for misuse with these compounds, drug testing laboratories monitor the urinary concentrations of endogenous steroid metabolites and their ratios, which constitute the steroid profile and compare them with reference ranges to detect unnaturally high values. However, the interpretation of the steroid profile is difficult due to large inter-individual variances, various confounding factors and different endogenous steroids marketed that influence the steroid profile in various ways. A support vector machine (SVM) algorithm was developed to statistically evaluate urinary steroid profiles composed of an extended range of steroid profile metabolites. This model makes the interpretation of the analytical data in the quest for deviating steroid profiles feasible and shows its versatility towards different kinds of misused endogenous steroids. The SVM model outperforms the current biomarkers with respect to detection sensitivity and accuracy, particularly when it is coupled to individual data as stored in the Athlete Biological Passport.
Resumo:
Collection : Bibliothèque de l'enseignement technique
Resumo:
Collection : Bibliothèque de l'enseignement technique
Resumo:
Collection : Manuels Roret
Resumo:
The paper proposes an approach aimed at detecting optimal model parameter combinations to achieve the most representative description of uncertainty in the model performance. A classification problem is posed to find the regions of good fitting models according to the values of a cost function. Support Vector Machine (SVM) classification in the parameter space is applied to decide if a forward model simulation is to be computed for a particular generated model. SVM is particularly designed to tackle classification problems in high-dimensional space in a non-parametric and non-linear way. SVM decision boundaries determine the regions that are subject to the largest uncertainty in the cost function classification, and, therefore, provide guidelines for further iterative exploration of the model space. The proposed approach is illustrated by a synthetic example of fluid flow through porous media, which features highly variable response due to the parameter values' combination.
Resumo:
Calcium-dependent exocytosis of synaptic vesicles mediates the release of neurotransmitters. Important proteins in this process have been identified such as the SNAREs, synaptotagmins, complexins, Munc18 and Munc13. Structural and functional studies have yielded a wealth of information about the physiological role of these proteins. However, it has been surprisingly difficult to arrive at a unified picture of the molecular sequence of events from vesicle docking to calcium-triggered membrane fusion. Using mainly a biochemical and biophysical perspective, we briefly survey the molecular mechanisms in an attempt to functionally integrate the key proteins into the emerging picture of the neuronal fusion machine.