886 resultados para Design and Analysis of Compute Experiment (DACE)
Resumo:
This paper investigates the implementation of a number of circuits used to perform a high speed closest value match lookup. The design is targeted particularly for use in a search trie, as used in various networking lookup applications, but can be applied to many other areas where such a match is required. A range of different designs have been considered and implemented on FPGA. A detailed description of the architectures investigated is followed by an analysis of the synthesis results. © 2006 IEEE.
Resumo:
Dual-rail encoding, return-to-spacer protocol, and hazard-free logic can be used to resist power analysis attacks by making energy consumed per clock cycle independent of processed data. Standard dual-rail logic uses a protocol with a single spacer, e.g., all-zeros, which gives rise to energy balancing problems. We address these problems by incorporating two spacers; the spacers alternate between adjacent clock cycles. This guarantees that all gates switch in every clock cycle regardless of the transmitted data values. To generate these dual-rail circuits, an automated tool has been developed. It is capable of converting synchronous netlists into dual-rail circuits and it is interfaced to industry CAD tools. Dual-rail and single-rail benchmarks based upon the advanced encryption standard (AES) have been simulated and compared in order to evaluate the method and the tool.
Resumo:
While WiFi monitoring networks have been deployed in previous research, to date none have assessed live network data from an open access, public environment. In this paper we describe the construction of a replicable, independent WLAN monitoring system and address some of the challenges in analysing the resultant traffic. Analysis of traffic from the system demonstrates that basic traffic information from open-access networks varies over time (temporal inconsistency). The results also show that arbitrary selection of Request-Reply intervals can have a significant effect on Probe and Association frame exchange calculations, which can impact on the ability to detect flooding attacks.
Resumo:
Power has become a key constraint in nanoscale inte-grated circuit design due to the increasing demands for mobile computing and higher integration density. As an emerging compu-tational paradigm, an inexact circuit offers a promising approach to significantly reduce both dynamic and static power dissipation for error-tolerant applications. In this paper, an inexact floating-point adder is proposed by approximately designing an exponent sub-tractor and mantissa adder. Related operations such as normaliza-tion and rounding are also dealt with in terms of inexact computing. An upper bound error analysis for the average case is presented to guide the inexact design; it shows that the inexact floating-point adder design is dependent on the application data range. High dynamic range images are then processed using the proposed inexact floating-point adders to show the validity of the inexact design; comparison results show that the proposed inexact floating-point adders can improve the power consumption and power-delay product by 29.98% and 39.60%, respectively.
Resumo:
Propagation of electromagnetic waves through a microstrip line with 2D electromagnetic baud gap (EBG) structures of different geometrical shapes in the ground plane is investigated in this paper. Using transmission-line theory, the design equations for EBG structures are calculated. The measured, numerical. and simulated results are in gone) agreement
Resumo:
This paper presents the optimal design of a sur- face mounted permanent magnet Brushless DC mo- tor (PMBLDC) meant for spacecraft applications. The spacecraft applications requires the choice of a torques motor with high torque density, minimum cogging torque, better positional stability and high torque to inertia ratio. Performance of two types of machine con¯gurations viz Slotted PMBLDC and Slotless PMBLDC with halbach array are compared with the help of analytical and FE methods. It is found that unlike a Slotted PMBLDC motor, the Slotless type with halbach array develops zero cogging torque without reduction in the developed torque. Moreover, the machine being coreless provides high torque to inertia ratio and zero magnetic stiction
Resumo:
Pharmacogenetic trials investigate the effect of genotype on treatment response. When there are two or more treatment groups and two or more genetic groups, investigation of gene-treatment interactions is of key interest. However, calculation of the power to detect such interactions is complicated because this depends not only on the treatment effect size within each genetic group, but also on the number of genetic groups, the size of each genetic group, and the type of genetic effect that is both present and tested for. The scale chosen to measure the magnitude of an interaction can also be problematic, especially for the binary case. Elston et al. proposed a test for detecting the presence of gene-treatment interactions for binary responses, and gave appropriate power calculations. This paper shows how the same approach can also be used for normally distributed responses. We also propose a method for analysing and performing sample size calculations based on a generalized linear model (GLM) approach. The power of the Elston et al. and GLM approaches are compared for the binary and normal case using several illustrative examples. While more sensitive to errors in model specification than the Elston et al. approach, the GLM approach is much more flexible and in many cases more powerful. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
Haptic devices tend to be kept small as it is easier to achieve a large change of stiffness with a low associated apparent mass. If large movements are required there is a usually a reduction in the quality of the haptic sensations which can be displayed. The typical measure of haptic device performance is impedance-width (z-width) but this does not account for actuator saturation, usable workspace or the ability to do rapid movements. This paper presents the analysis and evaluation of a haptic device design, utilizing a variant of redundant kinematics, sometimes referred to as a macro-micro configuration, intended to allow large and fast movements without loss of impedance-width. A brief mathematical analysis of the design constraints is given and a prototype system is described where the effects of different elements of the control scheme can be examined to better understand the potential benefits and trade-offs in the design. Finally, the performance of the system is evaluated using a Fitts’ Law test and found to compare favourably with similar evaluations of smaller workspace devices.
Resumo:
This work shows the design, simulation, and analysis of two optical interconnection networks for a Dataflow parallel computer architecture. To verify the optical interconnection network performance on the Dataflow architecture, we have analyzed the load balancing among the processors during the parallel programs executions. The load balancing is a very important parameter because it is directly associated to the dataflow parallelism degree. This article proves that optical interconnection networks designed with simple optical devices can provide efficiently the dataflow requirements of a high performance communication system.
Design and analysis of an efficient neural network model for solving nonlinear optimization problems
Resumo:
This paper presents an efficient approach based on a recurrent neural network for solving constrained nonlinear optimization. More specifically, a modified Hopfield network is developed, and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it handles optimization and constraint terms in different stages with no interference from each other. Moreover, the proposed approach does not require specification for penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyse its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network.
Resumo:
1. Distance sampling is a widely used technique for estimating the size or density of biological populations. Many distance sampling designs and most analyses use the software Distance. 2. We briefly review distance sampling and its assumptions, outline the history, structure and capabilities of Distance, and provide hints on its use. 3. Good survey design is a crucial prerequisite for obtaining reliable results. Distance has a survey design engine, with a built-in geographic information system, that allows properties of different proposed designs to be examined via simulation, and survey plans to be generated. 4. A first step in analysis of distance sampling data is modeling the probability of detection. Distance contains three increasingly sophisticated analysis engines for this: conventional distance sampling, which models detection probability as a function of distance from the transect and assumes all objects at zero distance are detected; multiple-covariate distance sampling, which allows covariates in addition to distance; and mark–recapture distance sampling, which relaxes the assumption of certain detection at zero distance. 5. All three engines allow estimation of density or abundance, stratified if required, with associated measures of precision calculated either analytically or via the bootstrap. 6. Advanced analysis topics covered include the use of multipliers to allow analysis of indirect surveys (such as dung or nest surveys), the density surface modeling analysis engine for spatial and habitat-modeling, and information about accessing the analysis engines directly from other software. 7. Synthesis and applications. Distance sampling is a key method for producing abundance and density estimates in challenging field conditions. The theory underlying the methods continues to expand to cope with realistic estimation situations. In step with theoretical developments, state-of- the-art software that implements these methods is described that makes the methods accessible to practicing ecologists.
Resumo:
The elimination of all external incisions is an important step in reducing the invasiveness of surgical procedures. Natural Orifice Translumenal Endoscopic Surgery (NOTES) is an incision-less surgery and provides explicit benefits such as reducing patient trauma and shortening recovery time. However, technological difficulties impede the widespread utilization of the NOTES method. A novel robotic tool has been developed, which makes NOTES procedures feasible by using multiple interchangeable tool tips. The robotic tool has the capability of entering the body cavity through an orifice or a single incision using a flexible articulated positioning mechanism and once inserted is not constrained by incisions, allowing for visualization and manipulations throughout the cavity. Multiple interchangeable tool tips of the robotic device initially consist of three end effectors: a grasper, scissors, and an atraumatic Babcock clamp. The tool changer is capable of selecting and switching between the three tools depending on the surgical task using a miniature mechanism driven by micro-motors. The robotic tool is remotely controlled through a joystick and computer interface. In this thesis, the following aspects of this robotic tool will be detailed. The first-generation robot is designed as a conceptual model for implementing a novel mechanism of switching, advancing, and controlling the tool tips using two micro-motors. It is believed that this mechanism achieves a reduction in cumbersome instrument exchanges and can reduce overall procedure time and the risk of inadvertent tissue trauma during exchanges with a natural orifice approach. Also, placing actuators directly at the surgical site enables the robot to generate sufficient force to operate effectively. Mounting the multifunctional robot on the distal end of an articulating tube provides freedom from restriction on the robot kinematics and helps solve some of the difficulties otherwise faced during surgery using NOTES or related approaches. The second-generation multifunctional robot is then introduced in which the overall size is reduced and two arms provide 2 additional degrees of freedom, resulting in feasibility of insertion through the esophagus and increased dexterity. Improvements are necessary in future iterations of the multifunctional robot; however, the work presented is a proof of concept for NOTES robots capable of abdominal surgical interventions.