790 resultados para Deproteinized bovine bone mineral
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Objective: To compare with pristine sites bone resorption and soft tissue adaptation at implants placed immediately into extraction sockets (IPIES) in conjunction with deproteinized bovine bone mineral (DBBM) particles and a collagen membrane.Material and methods: The mesial root of the third premolar in the left side of the mandible was endodontically treated (Test). Flaps were elevated, the tooth hemi-sectioned, and the distal root removed to allow the immediate installation of an implant into the extraction socket in a lingual position. DBBM particles were placed into the defect and on the outer contour of the buccal bony ridge, concomitantly with the placement of a collagen membrane. A non-submerged healing was allowed. The premolar on the right side of the mandible was left in situ (control). Ground sections from the center of the implant as well as from the center of the distal root of the third premolar of the opposite side of the mandible were obtained. The histological image from the implant site was superimposed to that of the contralateral pristine distal alveolus, and dimensional variation evaluated for the hard tissue and the alveolar ridge.Results: After 3 months of healing, both histological and photographic evaluation revealed a reduction of hard and soft tissue dimensions.Conclusion: The contour augmentation performed with DBBM particles and a collagen membrane at the buccal aspects of implants placed IPIES was not able to maintain the tissue volume.
Resumo:
AimThe aim of this study was to evaluate the healing of autologous bone block grafts or deproteinized bovine bone mineral (DBBM) block grafts applied concomitantly with collagen membranes for horizontal alveolar ridge augmentation.Material and methodsIn six Labrador dogs, molars were extracted bilaterally, the buccal bony wall was removed, and a buccal box-shaped defect created. After 3months, a bony block graft was harvested from the right ascending ramus of the mandible and reduced to a standardized size. A DBBM block was tailored to similar dimensions. The two blocks were secured with screws onto the buccal wall of the defects in the right and left sides of the mandible, respectively. Resorbable membranes were applied at both sides, and the flaps sutured. After 3months, one implant was installed in each side of the mandible, in the interface between grafts and parent bone. After 3months, biopsies were harvested and ground sections prepared to reveal a 6-month healing period of the grafts.Results776.2% and 5.9 +/- 7.5% of vital mineralized bone were found at the autologous bone and DBBM block graft sites, respectively. Moreover, at the DBBM site, 63 +/- 11.7% of connective tissue and 31 +/- 15.5% of DBBM occupied the area analyzed. Only 0.2 +/- 0.4% of DBBM was found in contact with newly formed bone. The horizontal loss was in a mean range of 0.9-1.8mm, and 0.3-0.8mm, at the autologous bone and DBBM block graft sites, respectively.ConclusionsAutologous bone grafts were vital and integrated to the parent bone after 6months of healing. In contrast, DBBM grafts were embedded into connective tissue, and only a limited amount of bone was found inside the scaffold of the biomaterial.
Resumo:
OBJECTIVES: The aim of this prospective study was to evaluate the 5-year performance and success rate of titanium screw-type implants with the titanium plasma spray (TPS) or the sand-blasted, large grit, acid-etched (SLA) surface inserted in a two-stage sinus floor elevation (SFE) procedure in the posterior maxilla. MATERIAL AND METHODS: A total of 59 delayed SFEs were performed in 56 patients between January 1997 and December 2001, using a composite graft with autogenous bone chips combined with deproteinized bovine bone mineral (DBBM) or synthetic porous beta-tricalcium phosphate (beta-TCP). After a healing period averaging 7.75 months, 111 dental implants were inserted. After an additional 8-14-week healing period, all implants were functionally loaded with cemented crowns or fixed partial dentures. The patients were recalled at 12 and 60 months for clinical and radiographic examination. RESULTS: One patient developed an acute infection in the right maxillary sinus after SFE and did not undergo implant therapy. Two of the 111 inserted implants had to be removed because of a developing atypical facial pain, and 11 implants were lost to follow-up and were considered drop-outs. The remaining 98 implants showed favorable clinical and radiographic findings at the 5-year examination. The peri-implant soft tissues were stable over time; the mean probing depths and mean attachment levels did not change during the follow-up period. The measurement of the bone crest levels (DIB values) indicated stability as well. Based on strict success criteria, all 98 implants were considered successfully integrated, resulting in a 5-year success rate of 98% (for TPS implants 89%, for SLA implants 100%). CONCLUSION: This prospective study assessing the performance of dental implants inserted after SFE demonstrated that titanium implants can achieve and maintain successful tissue integration with high predictability for at least 5 years of follow-up in carefully selected patients.
Resumo:
AIM: To assess the clinical and radiographic outcomes of immediate transmucosal placement of implants into molar extraction sockets. STUDY DESIGN: Twelve-month multicenter prospective cohort study. MATERIAL AND METHODS: Following molar extraction, tapered implants with an endosseous diameter of 4.8 mm and a shoulder diameter of 6.5 mm were immediately placed into the sockets. Molars with evidence of acute periapical pathology were excluded. After implant placement and achievement of primary stability, flaps were repositioned and sutured allowing a non-submerged, transmucosal healing. Peri-implant marginal defects were treated according to the principles of guided bone regeneration (GBR) by means of deproteinized bovine bone mineral particles in conjunction with a bioresrobable collagen membrane. Standardized radiographs were obtained at baseline and 12 months thereafter. Changes in depth and width of the distance from the implant shoulder (IS) and from the alveolar crest (AC) to the bottom of the defect (BD) were assessed. RESULTS: Eighty-two patients (42 males and 40 females) were enrolled and followed for 12 months. They contributed with 82 tapered implants. Extraction sites displayed sufficient residual bone volume to allow primary stability of all implants. Sixty-four percent of the implants were placed in the areas of 36 and 46. GBR was used in conjunction with the placement of all implants. No post-surgical complications were observed. All implants healed uneventfully yielding a survival rate of 100% and healthy soft tissue conditions after 12 months. Radiographically, statistically significant changes (P<0.0001) in mesial and distal crestal bone levels were observed from baseline to the 12-month follow-up. CONCLUSIONS: The findings of this 12-month prospective cohort study showed that immediate transmucosal implant placement represented a predictable treatment option for the replacement of mandibular and maxillary molars lost due to reasons other than periodontitis including vertical root fractures, endodontic failures and caries.
Resumo:
OBJECTIVES: To evaluate the pattern of tissue remodeling after maxillary sinus floor elevation using the transalveolar osteotome technique with or without utilizing grafting materials. METHODS: During the period of 2000-2005, 252 Straumann dental implants were inserted using the transalveolar sinus floor elevation technique in a group of 181 patients. For 88 or 35% of those implants, deproteinized bovine bone mineral with a particle size of 0.25-1 mm was used as the grafting material, but for the remaining 164 implants, no grafting material was utilized. Periapical radiographs were obtained with a paralleling technique and digitized. Two investigators, who were blinded to whether grafting material was used or not, subsequently evaluated the pattern of tissue remodeling. RESULTS: The mean residual bone height was 7.5 mm (SD 2.2 mm), ranging from 2 to 12.7 mm. The mean residual bone height for implants placed with grafting material (6.4 mm) was significantly less compared with the implants installed without grafting material (8.1 mm). The implants penetrated on average 3.1 mm (SD 1.7 mm) into the sinus cavity. The measured mean radiographic bone gain using the transalveolar technique without grafting material was significantly less, 1.7 mm (SD 2 mm) compared with a mean bone gain of 4.1 mm (SD 2.4 mm), when grafting material was used. Furthermore, the probability of gaining 2 mm or more of new bone was 39.1% when no grafting material was used. The probability increased to 77.9% when the implants were installed with grafting material. CONCLUSION: When the transalveolar sinus floor elevation was performed without utilizing grafting material, only a moderate gain of new bone could be detected mesial and distal to the implants. On the other hand, when grafting material was used, a substantial gain of new bone was usually seen on the radiographs.
Resumo:
AIM: To assess soft tissues healing at immediate transmucosal implants placed into molar extraction sites with buccal self-contained dehiscences. MATERIAL AND METHODS: For this 12-month controlled clinical trial, 15 subjects received immediate transmucosal tapered-effect (TE) implants placed in molar extraction sockets displaying a buccal bone dehiscence (test sites) with a height and a width of > or =3 mm, respectively. Peri-implant marginal defects were treated according to the principles of Guided Bone Regeneration (GBR) by means of deproteinized bovine bone mineral particles in conjunction with a bioresorbable collagen membrane. Fifteen subjects received implants in healed molar sites (control sites) with intact buccal alveolar walls following tooth extraction. In total, 30 TE implants with an endosseous diameter of 4.8 mm and a shoulder diameter of 6.5 mm were used. Flaps were repositioned and sutured, allowing non-submerged, transmucosal soft tissues healing. At the 12-month follow-up, pocket probing depths (PPD) and clinical attachment levels (CAL) were compared between implants placed in the test and the control sites, respectively. RESULTS: All subjects completed the 12-month follow-up period. All implants healed uneventfully, yielding a survival rate of 100%. After 12 months, statistically significantly higher (P<0.05) PPD and CAL values were recorded around implants placed in the test sites compared with those placed in the control sites. CONCLUSIONS: The findings of this controlled clinical trial showed that healing following immediate transmucosal implant installation in molar extraction sites with wide and shallow buccal dehiscences yielded less favorable outcomes compared with those of implants placed in healed sites, and resulted in lack of 'complete' osseointegration.
Resumo:
BACKGROUND Contour augmentation around early-placed implants (Type 2 placement) using autogenous bone chips combined with deproteinized bovine bone mineral (DBBM) and a collagen barrier membrane has been documented to predictably provide esthetically satisfactory clinical outcomes. In addition, recent data from cone beam computed tomography studies have shown the augmented volume to be stable long-term. However, no human histologic data are available to document the tissue reactions to this bone augmentation procedure. METHODS Over an 8-year period, 12 biopsies were harvested 14 to 80 months after implant placement with simultaneous contour augmentation in 10 patients. The biopsies were subjected to histologic and histomorphometric analysis. RESULTS The biopsies consisted of 32.0% ± 9.6% DBBM particles and 40.6% ± 14.6% mature bone. 70.3% ± 14.5% of the DBBM particle surfaces were covered with bone. On the remaining surface, multinucleated giant cells with varying intensity of tartrate-resistant acid phosphatase staining were regularly present. No signs of inflammation were visible, and no tendency toward a decreasing volume fraction of DBBM over time was observed. CONCLUSIONS The present study confirms previous findings that osseointegrated DBBM particles do not tend to undergo substitution over time. This low substitution rate may be the reason behind the clinically and radiographically documented long-term stability of contour augmentation using a combination of autogenous bone chips, DBBM particles, and a collagen membrane.
Resumo:
AIM To assess the clinical and radiographic outcomes applying a combined resective and regenerative approach in the treatment of peri-implantitis. MATERIALS AND METHODS Subjects with implants diagnosed with peri-implantitis (i.e., pocket probing depth (PPD) ≥5 mm with concomitant bleeding on probing (BoP) and ≥2 mm of marginal bone loss or exposure of ≥1 implant thread) were treated by means of a combined approach including the application of a deproteinized bovine bone mineral and a collagen membrane in the intrabony and implantoplasty in the suprabony component of the peri-implant lesion, respectively. The soft tissues were apically repositioned allowing for a non-submerged healing. Clinical and radiographic parameters were evaluated at baseline and 12 months after treatment. RESULTS Eleven subjects with 11 implants were treated and completed the 12-month follow-up. No implant was lost yielding a 100% survival rate. At baseline, the mean PPD and mean clinical attachment level (CAL) were 8.1 ± 1.8 mm and 9.7 ± 2.5 mm, respectively. After 1 year, a mean PPD of 4.0 ± 1.3 mm and a mean CAL of 6.7 ± 2.5 mm were assessed. The differences between the baseline and the follow-up examinations were statistically significant (P = 0.001). The mucosal recession increased from 1.7 ± 1.5 at baseline to 3.0 ± 1.8 mm at the 12-month follow-up (P = 0.003). The mean% of sites with BoP+ around the selected implants decreased from 19.7 ± 40.1 at baseline to 6.1 ± 24.0 after 12 months (P = 0.032). The radiographic marginal bone level decreased from 8.0 ± 3.7 mm at baseline to 5.2 ± 2.2 mm at the 12-month follow-up (P = 0.000001). The radiographic fill of the intrabony component of the defect amounted to 93.3 ± 13.0%. CONCLUSION Within the limits of this study, a combined regenerative and resective approach for the treatment of peri-implant defects yielded positive outcomes in terms of PPD reduction and radiographic defect fill after 12 months.
Resumo:
OBJECTIVES Previously, the use of enamel matrix derivative (EMD) in combination with a natural bone mineral (NBM) was able to stimulate periodontal ligament cell and osteoblast proliferation and differentiation. Despite widespread use of EMD for periodontal applications, the effects of EMD on bone regeneration are not well understood. The aim of the present study was to test the ability of EMD on bone regeneration in a rat femur defect model in combination with NBM. MATERIALS AND METHODS Twenty-seven rats were treated with either NBM or NBM + EMD and assigned to histological analysis at 2, 4, and 8 weeks. Defect morphology and mineralized bone were assessed by μCT. For descriptive histology, hematoxylin and eosin staining and Safranin O staining were performed. RESULTS Significantly more newly formed trabecular bone was observed at 4 weeks around the NBM particles precoated with EMD when compared with NBM particles alone. The drilled control group, in contrast, achieved minimal bone regeneration at all three time points (P < 0.05). CONCLUSIONS The present results may suggest that EMD has the ability to enhance the speed of new bone formation when combined with NBM particles in rat osseous defects. CLINICAL RELEVANCE These findings may provide additional clinical support for the combination of EMD with bone graft for the repair of osseous and periodontal intrabony defects.
Resumo:
The aim of this study was to evaluate the effect of platelet rich plasma (PRP) associated to bovine inorganic bone (Bio-Oss®; Geistlich) or bioactive glass (Bio-Gran®; Orthovita, Implant Innovations) on bone healing. Bone cavities were prepared in both sides of the mandible of 4 adult male dogs. The cavities were divided into 4 groups according to the filling material as follows: control, PRP, PRP/Bio-Oss, PRP/Bio-Gran. The animals were sacrificed after 120 days and histological and histomorphometrical analysis was performed. The control group showed 80.6% of bone formation in the longitudinal sections at 6 mm depth and 83.7% at 13 mm depth. The transverse sections displayed 74.2% at both 6 and 13 mm depths. The PRP group showed 21.1% of bone formation in the longitudinal sections at 6 mm depth, and 23.1% at 13 mm depth. The transverse sections presented 28.98% of bone formation at 6 mm depth and 41.2% at 13 mm depth. The PRP/Bio-Gran group showed 25.1% of bone formation in the longitudinal sections at 6 mm depth and 30.4% at 13 mm depth. In the transverse sections, the bone formation was 43.0% at 6 mm depth and 39.7% at 13 mm depth. The PRP/Bio-Oss group showed 35.5% of bone formation in the longitudinal sections at 6 mm depth and 42% at 13 mm depth. In the transversal sections, the bone formation was 26.8% and 31.2% at the depths of 6 and 13 mm, respectively. PRP alone or associated with bovine inorganic bone or bioglass had no significant effect in bone healing.
Resumo:
Areal bone mineral density (aBMD) is the most common surrogate measurement for assessing the bone strength of the proximal femur associated with osteoporosis. Additional factors, however, contribute to the overall strength of the proximal femur, primarily the anatomical geometry. Finite element analysis (FEA) is an effective and widely used computerbased simulation technique for modeling mechanical loading of various engineering structures, providing predictions of displacement and induced stress distribution due to the applied load. FEA is therefore inherently dependent upon both density and anatomical geometry. FEA may be performed on both three-dimensional and two-dimensional models of the proximal femur derived from radiographic images, from which the mechanical stiffness may be redicted. It is examined whether the outcome measures of two-dimensional FEA, two-dimensional, finite element analysis of X-ray images (FEXI), and three-dimensional FEA computed stiffness of the proximal femur were more sensitive than aBMD to changes in trabecular bone density and femur geometry. It is assumed that if an outcome measure follows known trends with changes in density and geometric parameters, then an increased sensitivity will be indicative of an improved prediction of bone strength. All three outcome measures increased non-linearly with trabecular bone density, increased linearly with cortical shell thickness and neck width, decreased linearly with neck length, and were relatively insensitive to neck-shaft angle. For femoral head radius, aBMD was relatively insensitive, with two-dimensional FEXI and threedimensional FEA demonstrating a non-linear increase and decrease in sensitivity, respectively. For neck anteversion, aBMD decreased non-linearly, whereas both two-dimensional FEXI and three dimensional FEA demonstrated a parabolic-type relationship, with maximum stiffness achieved at an angle of approximately 15o. Multi-parameter analysis showed that all three outcome measures demonstrated their highest sensitivity to a change in cortical thickness. When changes in all input parameters were considered simultaneously, three and twodimensional FEA had statistically equal sensitivities (0.41±0.20 and 0.42±0.16 respectively, p = ns) that were significantly higher than the sensitivity of aBMD (0.24±0.07; p = 0.014 and 0.002 for three-dimensional and two-dimensional FEA respectively). This simulation study suggests that since mechanical integrity and FEA are inherently dependent upon anatomical geometry, FEXI stiffness, being derived from conventional two-dimensional radiographic images, may provide an improvement in the prediction of bone strength of the proximal femur than currently provided by aBMD.
Resumo:
Introduction The Global Burden of Disease Study 2010 estimated the worldwide health burden of 291 diseases and injuries and 67 risk factors by calculating disability-adjusted life years (DALYs). Osteoporosis was not considered as a disease, and bone mineral density (BMD) was analysed as a risk factor for fractures, which formed part of the health burden due to falls. Objectives To calculate (1) the global distribution of BMD, (2) its population attributable fraction (PAF) for fractures and subsequently for falls, and (3) the number of DALYs due to BMD. Methods A systematic review was performed seeking population-based studies in which BMD was measured by dual-energy X-ray absorptiometry at the femoral neck in people aged 50 years and over. Age- and sex-specific mean ± SD BMD values (g/cm2) were extracted from eligible studies. Comparative risk assessment methodology was used to calculate PAFs of BMD for fractures. The theoretical minimum risk exposure distribution was estimated as the age- and sex-specific 90th centile from the Third National Health and Nutrition Examination Survey (NHANES III). Relative risks of fractures were obtained from a previous meta-analysis. Hospital data were used to calculate the fraction of the health burden of falls that was due to fractures. Results Global deaths and DALYs attributable to low BMD increased from 103 000 and 3 125 000 in 1990 to 188 000 and 5 216 000 in 2010, respectively. The percentage of low BMD in the total global burden almost doubled from 1990 (0.12%) to 2010 (0.21%). Around one-third of falls-related deaths were attributable to low BMD. Conclusions Low BMD is responsible for a growing global health burden, only partially representative of the real burden of osteoporosis.
Resumo:
The effect of 18 months of training on the ovarian hormone concentrations and bone mineral density (BMD) accrual was assessed longitudinally in 14 adolescent rowers and 10 matched controls, aged 14–15 years. Ovarian hormone levels were assessed by urinary estrone glucuronide (E1G) and pregnanediol glucuronide (PdG) excretion rates, classifying the menstrual cycles as ovulatory or anovulatory. Total body (TB), total proximal femur (PF), femoral neck (FN) and lumbar spine (LS) (L2–4) bone mass were measured at baseline and 18 months using dual-energy X-ray densitometry. Results were expressed as bone mineral content (BMC), BMD and bone mineral apparent density (BMAD). Five rowers had anovulatory menstrual cycles compared with zero prevalence for the control subjects. Baseline TB BMD was significantly higher in the ovulatory rowers, with PF BMD, FN BMD and LS BMD similar for all groups. At completion, the LS bone accrual of the ovulatory rowers was significantly greater (BMC 8.1%, BMD 6.2%, BMAD 6.2%) than that of the anovulatory rowers (BMC 1.1%, BMD 3.9%, BMAD 1.6%) and ovulatory controls (BMC 0.5%, BMD 1.1%, BMAD 1.1%). No difference in TB, PF or FN bone accrual was observed among groups. This study demonstrated an osteogenic response to mechanical loading, with the rowers accruing greater bone mass than the controls at the lumbar spine. However, the exercise-induced osteogenic benefits were less when rowing training was associated with low estrogen and progesterone metabolite excretion.