996 resultados para Dental prosthesis design
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective To evaluate the survival rate of dental implants placed in the cleft area Design Retrospective study Setting Hospital for Rehabilitation of Craniofacial Anomalies, Brazil Institutional Tertiary Healthcare Center Patients 120 patients who received dental implants in the grafted cleft area in the years 1999 to 2005 Interventions Clinical data were evaluated from the records of 120 patients according to the following criteria placement grafted, cleft area, and age at surgery, age at placement of dental implants, site and dimension of implants, interval between placement of implants and the last clinical follow-up, and interval between placement and removal or indication for removal of implants Main Outcome Measures Percentage of survival rate of implants Results Mean age at placement of the bone graft was 17 6 years and 21 years at placement of implants A total of 123 cleft areas received secondary bone graft and bone graft to install implants (regraft) The mean survival rate was 34 months since placement of the implant to the last clinical follow-up and 26 months since placement of the prosthesis Seven dental implants were removed The survival rate since placement to the last clinical follow-up was 94 3% Conclusion Rehabilitation of the cleft area with dental implants is a viable and secure alternative, with good prognosis
Resumo:
Purpose: To evaluate the flexural strength of two fixed dental prosthesis (FDP) designs simulating frameworks of adhesive fixed partial prostheses, reinforced or not by glass fiber.Materials and Methods: Forty specimens, made with composite resin, were divided into 4 groups according to the framework design and the presence of fiber reinforcement: A1 - occlusal support; A2: occlusal support + glass fiber; B1: occlusal and proximal supports; B2: occlusal and proximal supports + glass fiber. The specimens were subjected to the three-point bending test, and the data were submitted to two-way ANOVA and Tukey's test (5%).Results: Group A2 (97.9 +/- 38 N) was statistically significantly different from all other experimental groups, presenting a significantly lower mean flexural strength.Conclusion: The use of glass fibers did not improve the flexural strength of composite resin, and designs with occlusal and proximal supports presented better results than designs simulating only occlusal support.
Resumo:
This paper describes a case of a rehabilitation involving Computer Aided Design/Computer Aided Manufacturing (CAD-CAM) system in implant supported and dental supported prostheses using zirconia as framework. The CAD-CAM technology has developed considerably over last few years, becoming a reality in dental practice. Among the widely used systems are the systems based on zirconia which demonstrate important physical and mechanical properties of high strength, adequate fracture toughness, biocompatibility and esthetics, and are indicated for unitary prosthetic restorations and posterior and anterior framework. All the modeling was performed by using CAD-CAM system and prostheses were cemented using resin cement best suited for each situation. The rehabilitation of the maxillary arch using zirconia framework demonstrated satisfactory esthetic and functional results after a 12-month control and revealed no biological and technical complications. This article shows the important of use technology CAD/CAM in the manufacture of dental prosthesis and implant-supported.
Resumo:
Conventional tilted implants are used in oral rehabilitation for heavily absorbed maxilla to avoid bone grafts; however, few research studies evaluate the biomechanical behavior when different angulations of the implants are used. The aim of this study was evaluate, trough photoelastic method, two different angulations and length of the cantilever in fixed implant-supported maxillary complete dentures. Two groups were evaluated: G15 (distal tilted implants 15°) and G35 (distal tilted implants 35°) n = 6. For each model, 2 distal tilted implants (3.5 x 15 mm long cylindrical cone) and 2 parallel tilted implants in the anterior region (3.5 x 10 mm) were installed. Photoelastic models were submitted to three vertical load tests: in the end of cantilever, in the last pillar and in the all pillars at the same time. We obtained the shear stress by Fringes software and found values for total, cervical and apical stress. The quantitative analysis was performed using the Student tests and Mann-Whitney test; p ≥ 0.05. There is no difference between G15 and G35 for total stress regardless of load type. Analyzing the apical region, G35 reduced strain values considering the distal loads (in the cantilever p = 0.03 and in the last pillar p = 0.02), without increasing the stress level in the cervical region. Considering the load in all pillars, G35 showed higher stress concentration in the cervical region (p = 0.04). For distal loads, G15 showed increase of tension in the apical region, while for load in all pillars, G35 inclination increases stress values in the cervical region.
Resumo:
The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant’s pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant’s pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant’s main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant’s pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67±34μm and 108μm, and angular misfits of 0.15±0.08º and 1.4º, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants’ pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.
Resumo:
This study examined the association between oral candidiasis in elderly users and nonusers of prosthesis and its predisposing factors. To this end, we performed a cross-sectional study where saliva samples from 48 patients were collected they used prosthesis and 43 patients (control group) who did not use. Among the 91 patients, Candida spp were isolated in 40 (83.3%) who used prosthesis and in 23 (53.5%) in the control group. A statistically significant association was determined between the two groups, the isolation of yeasts and dental prosthesis (p < 0.05, OR = 4.3). The most common etiological agent was Candida albicans (37 isolates), with 23 (62.2%) in the denture group and 14 (37.8%) (control group). Among patients who presented clinical manifestations of oral candidiasis (n = 24), 83.3% (n = 20) belonged to the group that wore dentures, while only 16.7% (n = 4) belonged to the control group. Elderly patients with diabetes had 4.4 times higher estimated risk of developing oral candidiasis when compared with individuals without this condition. There was no statistically significant association between being user prostheses and have diabetes with the onset of candidiasis. No statistically significant association was determined between xerostomia, use of prosthesis and oral candidiasis. The use of prosthetics and poor oral hygiene in elderly patients predisposes to the development of oral candidiasis.
Resumo:
Introduction: The overeruption of upper molars due to the premature loss of antagonist teeth can be treated with the help of miniscrews. The aim of this study was to evaluate the movement of a typodont molar according to the biomechanical approach used with miniscrews. Study design: The study was conducted with four plaster models filled with typodont wax. In each model we used one absolute anchorage on the palatal side and another on the buccal side in different positions, thus generating four different biomechanical systems. A force of 150 g was applied to each side of the resin tooth. Periapical radiographs were taken preintrusion and immediately after completion of the intrusion. Photographs were taken in both the sagittal and occlusal planes every 3 min. The radiographic films and photographs were measured and compared. Results: A vertical movement of the molar was observed in all the models, with system 4 showing the greatest movement. Rotation in the occlusal plane only occurred in system 2, while in system 1 there was a change in the axial axis of 37 degrees. Conclusions: The anchorage site and the combination of forces applied may determine the resulting tooth movement
Resumo:
Implant fracture is an infrequent cause of implant failure. The present study evaluates 21 fractured implants, with an analysis of patient age and sex, the type, length and diameter of the implant, positioning in the dental arch, the type of prosthetic rehabilitation involved, the number of abutments and pontics, the presence or absence of distal extensions or cantilevers, and loading time to fracture. Implant fracture was more common in males than in females (15:4), and the mean patient age was 56.9 years. Most cases (n = 19) corresponded to implant-supported fixed prostheses - 16 with cantilevers of different lengths- while only two fractured implants were supporting overdentures instead of fixed prostheses. The great majority of fractured implants (80.9%) were located in the molar and premolar regions, and most fractured within 3-4 years after loading. It is important to know and apply the measures required to prevent implant fracture, and to seek the best individualized solution for each case - though complete implant removal is usually the treatment of choice
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose: This three-dimensional finite element analysis study evaluated the effect of different material combinations on stress distribution within metal-ceramic and all-ceramic single implant-supported prostheses. Materials and Methods: Three-dimensional finite element models reproducing a segment of the maxilla with a missing left first premolar were created. Five groups were established to represent different superstructure materials: GP, porcelain fused to gold alloy; GR, modified composite resin fused to gold alloy; TP, porcelain fused to titanium; TR, modified composite resin fused to titanium; and ZP, porcelain fused to zirconia. A 100-N vertical force was applied to the contact points of the crowns. All models were fixed in the superior region of bone tissue and in the mesial and distal faces of the maxilla section. Stress maps were generated by processing with finite element software. Results: Stress distribution and stress values of supporting bone were similar for the GP, GR, TP, and ZP models (1,574.3 MPa, 1,574.3 MPa, 1,574.3 MPa, and 1,574.2 MPa, respectively) and different for the TR model (1,838.3 MPa). The ZP model transferred less stress to the retention screw (785 MPa) than the other groups (939 MPa for GP, 961 MPa for GR, 1,010 MPa for TP, and 1,037 MPa for TR). Conclusion: The use of different materials to fabricate a superstructure for a single implant-supported prosthesis did not affect the stress distribution in the supporting bone. The retention screw received less stress when a combination of porcelain and zirconia was used. Int J Oral Maxillofac Implants 2011;26:1202-1209
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: This study investigated in situ the effect of iron (Fe) on the reduction of demineralization of bovine enamel, as well as on the composition of dental biofilm.Design and methods: Twelve volunteers were included in this blind crossover study, which was conducted in two stages of 14 days each. For each stage, the volunteers received palatal appliances containing four blocks of bovine enamel (4 mm x 4 mm x 2.5 mm). Six volunteers dripped a solution of 15 mmol L-1 ferrous sulphate onto the fragments and the remaining six dripped deionized water (eight times per day). After five minutes, a fresh 20% (w/v) sucrose solution was dripped onto all enamel blocks. During the experimental period the volunteers brushed their teeth with non-fluoridated dentifrice. After each stage, the percentage of surface microhardness change (%SMHC) and area of mineral toss (Delta Z) were determined on enamel and the dental biofilm formed on the blocks was collected and analysed for F, P, Ca, Fe and alkali-soluble carbohydrates. The concentrations of F, Ca and Fe in enamel were also analysed after acid biopsies.Results: There was a statistically significant increase in the P and Fe concentrations in the biofilms treated with ferrous sulphate (p < 0.05), which was not observed for F, Ca and alkali-soluble carbohydrates. The group treated with ferrous sulphate had significantly lower %SMHC and Delta Z when compared to control (p < 0.05).Conclusions: These results showed that ferrous sulphate reduced the demineralization of enamel blocks and altered the ionic composition of the dental biofilm formed in situ. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: Tissue reactions to 4 different implant surfaces were evaluated in regard to the development and progression of ligature-induced peri-implantitis. Materials and Methods: In 6 male mongrel dogs, a total of 36 dental implants with different surfaces (9 titanium plasma-sprayed, 9 hydroxyapatite-coated, 9 acid-etched, and 9 commercially pure titanium) were placed 3 months after mandibular premolar extraction. After 3 months with optimal plaque control, abutment connection was performed. Forty-five days later, cotton ligatures were placed around the implants to induce peri-implantitis. At baseline and 20, 40, and 60 days after placement, the presence of plaque, peri-implant mucosal redness, bleeding on probing, probing depth, clinical attachment loss, mobility, vertical bone loss, and horizontal bone loss were assessed. Results: The results did not show significant differences among the surfaces for any parameter during the study (P > .05). All surfaces were equally susceptible to ligature-induced peri-implantitis over time (P < .001). Correlation analysis revealed a statistically significant relationship between width of keratinized tissue and vertical bone loss (r 2 = 0.81; P = .014) and between mobility and vertical bone loss (r 2 = 0.66; P = .04), both for the titanium plasma-sprayed surface. Discussion and Conclusions: The present data suggest that all surfaces were equally susceptible to experimental peri-implantitis after a 60-day period.