984 resultados para Density, mass density
Resumo:
Background Serum lutein (L) and zeaxanthin (Z) positively correlate with macular pigment optical density (MPOD), hence the latter is a valuable indirect tool for measuring L and Z content in the macula. L and Z have been attributed antioxidant capacity and protection from certain retinal diseases but their uptake within the eye is thought to depend on genetic, age and environmental factors. In particular gene variants within beta-carotene monooxygenase (BCMO1) are thought to modulate MPOD in the macula. Objectives: To determine the effect of BCMO1 single nucleotide polymorphisms (SNPs) rs11645428, rs6420424 and rs6464851 on macular pigment optical density (MPOD) in a cohort of young healthy participants of Caucasian origin with normal ocular health. Design In this cohort study, MPOD was assessed in 46 healthy participants (22 male and 24 female) with a mean age of 24 ± 4.0 years (range 19-33). The three SNPs, rs11645428, rs6420424, rs6564851 that have established associations with MPOD were determined using MassEXTEND (hME) Sequenom assay. One-way analysis of variance (ANOVA) was performed on groups segregated into homozygous and heterozygous BCMO1 genotypes. Correlations between body mass index (BMI), iris colour, gender, central retinal thickness (CRT), diet and MPOD were investigated. Results MPOD did not significantly vary with BCMO1 rs11645428 (F2,41 = 0.700, p = 0.503), rs6420424 (F2,41 = 0.210, p = 0.801) nor rs6464851 homozygous or heterozygous genotypes (F2,41 = 0,13, p = 0.88), in this young healthy cohort. The combination of these three SNPs into triple genotypes based on plasma conversion efficiency did not affect MPOD (F2,41 = 0.07, p = 0.9). There was a significant negative correlation with MPOD and central retinal thickness (r = - 0.39, p = 0.01) but no significant correlation between BMI, iris colour, gender and MPOD. Conclusion Our results indicate that macular pigment deposition within the central retina is not dependent on BCMO1 gene variants in young healthy people. We propose that MPOD is saturated in younger persons and/or other gene variant combinations determine its deposition.
Resumo:
Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low bone mineral density (BMD) is a major predisposing factor to fracture and is known to be highly heritable. Site-, gender-, and age-specific genetic effects on BMD are thought to be significant, but have largely not been considered in the design of genome-wide association studies (GWAS) of BMD to date. We report here a GWAS using a novel study design focusing on women of a specific age (postmenopausal women, age 55-85 years), with either extreme high or low hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0, n = 1055, or -4.0 to -1.5, n = 900), with replication in cohorts of women drawn from the general population (n = 20,898). The study replicates 21 of 26 known BMD-associated genes. Additionally, we report suggestive association of a further six new genetic associations in or around the genes CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and SOX4, with replication in two independent datasets. A novel mouse model with a loss-of-function mutation in GALNT3 is also reported, which has high bone mass, supporting the involvement of this gene in BMD determination. In addition to identifying further genes associated with BMD, this study confirms the efficiency of extreme-truncate selection designs for quantitative trait association studies. © 2011 Duncan et al.
Resumo:
Bone mass acquired during childhood is the primary determinant of adult bone mineral density (BMD) and osteoporosis risk. Bone accrual is subject to genetic influences. Activating and inactivating LRP5 gene mutations elicit extreme bone phenotypes, while more common LRP5 polymorphisms are associated with normal variation of BMD. Our aim was to test the hypothesis that LRP5 gene polymorphisms influence bone mass acquisition during childhood. The association between LRP5 gene polymorphisms and bone size and mineralization was examined in 819 unrelated British Caucasian children (n = 429 boys) aged 9 years. Height, weight, pubertal status (where available), total-body and spinal bone area, bone mineral content (BMC), BMD, and area-adjusted BMC (aBMC) were assessed. Dual-energy X-ray absorptiometry (DXA)-gene associations were assessed by linear regression, with adjustment for age, gender, pubertal status, and body size parameters. There were 140, 79, 12, and 2 girls who achieved Tanner stages I-IV, respectively, and 179 and 32 boys who achieved Tanner stages I and II, respectively. The rs2306862 (N740N) coding polymorphism in exon 10 of the LRP5 gene was associated with spinal BMD and aBMC (each P = 0.01) and total-body BMD and aBMC (P = 0.04 and 0.03, respectively). Adjusting for pubertal stage strengthened associations between this polymorphism and spinal BMD and aBMC (P = 0.01 and 0.002, respectively). Individuals homozygous for the T allele had greater spinal BMD and aBMC scores than those homozygous for the C allele. A dose effect was apparent as the mean spinal BMD and aBMC of heterozygous TC individuals were intermediate between those of their TT and CC counterparts. The N740N polymorphism in exon 10 of LRP5 was associated with spinal BMD and aBMC in pre- and early pubertal children. These results indicate that LRP5 influences volumetric bone density in childhood, possibly through effects on trabecular bone formation.
Resumo:
Peak bone mass achieved in adolescence is a determinant of bone mass in later life. In order to identify genetic variants affecting bone mineral density (BMD), we performed a genome-wide association study of BMD and related traits in 1518 children from the Avon Longitudinal Study of Parents and Children (ALSPAC). We compared results with a scan of 134 adults with high or low hip BMD. We identified associations with BMD in an area of chromosome 12 containing the Osterix (SP7) locus, a transcription factor responsible for regulating osteoblast differentiation (ALSPAC: P = 5.8 × 10-4; Australia: P = 3.7 × 10-4). This region has previously shown evidence of association with adult hip and lumbar spine BMD in an Icelandic population, as well as nominal association in a UK population. A meta-analysis of these existing studies revealed strong association between SNPs in the Osterix region and adult lumbar spine BMD (P = 9.9 × 10-11). In light of these findings, we genotyped a further 3692 individuals from ALSPAC who had whole body BMD and confirmed the association in children as well (P = 5.4 × 10-5). Moreover, all SNPs were related to height in ALSPAC children, but not weight or body mass index, and when height was included as a covariate in the regression equation, the association with total body BMD was attenuated. We conclude that genetic variants in the region of Osterix are associated with BMD in children and adults probably through primary effects on growth.
Resumo:
Genetic factors are known to influence both the peak bone mass and probably the rate of change in bone density. A range of regulatory and structural genes has been proposed to be involved including collagen 1α1 (COL1A1), the estrogen receptor (ER), and the vitamin D receptor (VDR), but the actual genes involved are uncertain. We therefore studied the role of the COL1A1 and VDR loci in control of bone density by linkage in 45 dizygotic twin pairs and 29 nuclear families comprising 120 individuals. The influences on bone density of polymorphisms of COL1A1, VDR, and ER were studied by association both cross-sectionally and longitudinally in 193 elderly postmenopausal women (average age, 69 years) over a mean follow-up time of 6.3 years. Weak linkage of the COL1A1 locus with bone density was observed in both twins and families (p = 0.02 in both data sets), confirming previous observations of linkage of this locus with bone density. Association between the MscI polymorphism of COL1A1 and rate of lumbar spine bone loss was observed with significant gene-environment interaction related to dietary calcium intake (p = 0.0006). In the lowest tertile of dietary calcium intake, carriers of "s" alleles lost more bone than "SS" homozygotes (p = 0.01), whereas the opposite was observed in the highest dietary calcium intake (p = 0.003). Association also was observed between rate of bone loss at both the femoral neck and the lumbar spine and the TaqI VDR polymorphism (p = 0.03). This association was strongest in those in the lowest tertile of calcium intake, also suggesting the presence of gene-environment interaction involving dietary calcium and VDR, influencing bone turnover. No significant association was observed between the PvuII ER polymorphism alone or in combination with VDR or COL1A1 genotypes, with either bone density or its rate of change. These data support the involvement of COL1A1 in determination of bone density and the interaction of both COL1A1 and VDR with calcium intake in regulation of change of bone density over time.
Resumo:
Objective. To assess the cost-effectiveness of bone density screening programmes for osteoporosis. Study design. Using published and locally available data regarding fracture rates and treatment costs, the overall costs per fracture prevented, cost per quality of life year (QALY) saved and cost per year of life gained were estimated for different bone density screening and osteoporosis treatment programmes. Main outcome measures. Cost per fracture prevented, cost per QALY saved, and cost per year of life gained. Results. In women over the age of 50 years, the costs per fracture prevented of treating all women with hormone replacement therapy, or treating only if osteoporosis is demonstrated on bone density screening were £32,594 or £23,867 respectively. For alendronate therapy for the same groups, the costs were £171,067 and £14,067 respectively. Once the background rate of treatment with alendronate reaches 18%, bone density screening becomes cost-saving. Costs estimates per QALY saved ranged from £1,514 to £39,076 for osteoporosis treatment with alendronate following bone density screening. Conclusions. For relatively expensive medications such as alendronate, treatment programmes with prior bone density screening are far more cost effective than those without, and in some circumstances become cost-saving. Costs per QALY of life saved and per year of life gained for osteoporosis treatment with prior bone density screening compare favourably with treatment of hypertension and hypercholesterolemia.
Resumo:
HYPOTHESIS Bone is a metabolically active tissue which responds to high strain loading. The purpose of this study was to examine the bone response to high +Gz force loading generated during high performance flying. METHODS The bone response to +Gz force loading was monitored in 10 high performance RAAF pilots and 10 gender-, age-, height-, weight-matched control subjects. The pilots were stationed at the RAAF base at Pearce, Western Australia, all completing the 1-yr flight training course. The pilots flew the Pilatus PC-9 aircraft, routinely sustaining between 2.0 and 6.0 +Gz. Bone mineral density (BMD) and bone mineral content (BMC) were measured at baseline and 12 mo, using the Hologic QDR 2000+ bone densitometer. RESULTS After controlling for change in total body weight and fat mass, the pilots experienced a significant increase in BMD and BMC for thoracic spine, pelvis, and total body, in the magnitude of 11.0%, 4.9%, and 3.7%, respectively. However, no significant changes in bone mineral were observed in the pilots lumbar spine, arms or legs. The control group experienced a significant decrease in pelvic BMC, with no other bone mineral changes observed at any site. CONCLUSIONS These findings suggest that site specific BMD is increased in response to high +Gz forces generated during high performance flying in a PC-9.
Resumo:
OBJECTIVE: To determine whether a microsatellite polymorphism located towards the 3' end of the low density lipoprotein receptor gene (LDLR) is associated with obesity. DESIGN: A cross-sectional case-control study. SUBJECTS: One hundred and seven obese individuals, defined as a body mass index (BMI) > or = 26 kg/m2, and 163 lean individuals, defined as a BMI < 26 kg/m2. MEASUREMENTS: BMI, blood pressure, serum lipids, alleles of LDLR microsatellite (106 bp, 108 bp and 112 bp). RESULTS: There was a significant association between variants of the LDLR microsatellite and obesity, in the overall tested population, due to a contributing effect in females (chi 2 = 12.3, P = 0.002), but not in males (chi 2 = 0.3, P = 0.87). In females, individuals with the 106 bp allele were more likely to be lean, while individuals with the 112 bp and/or 108 bp alleles tended to be obese. CONCLUSIONS: These results suggest that in females, LDLR may play a role in the development of obesity.
Resumo:
Heredity explains a major part of the variation in calcium homeostasis and bone strength, and the susceptibility to osteoporosis is polygenetically regulated. Bone phenotype results from the interplay between lifestyle and genes, and several nutritional factors modulate bone health throughout life. Thus, nutrigenetics examining the genetic variation in nutrient intake and homeostatic control is an important research area in the etiology of osteoporosis. Despite continuing progress in the search for candidate genes for osteoporosis, the results thus far have been inconclusive. The main objective of this thesis was to investigate the associations of lactase, vitamin D receptor (VDR), calcium sensing receptor (CaSR) and parathyroid hormone (PTH) gene polymorphisms and lifestyle factors and their interactions with bone health in Finns at varying stages of the skeletal life span. Markers of calcium homeostasis and bone remodelling were measured from blood and urine samples. Bone strength was measured at peripheral and central bone sites. Lifestyle factors were assessed with questionnaires and interviews. Genetic lactase non-persistence (the C/C-13910 genotype) was associated with lower consumption of milk from childhood, predisposing females in particular to inadequate calcium intake. Consumption of low-lactose milk and milk products was shown to decrease the risk for inadequate calcium intake. In young adulthood, bone loss was more common in males than in females. Males with the lactase C/C-13910 genotype may be more susceptible to bone loss than males with the other lactase genotypes, although calcium intake predicts changes in bone mass more than the lactase genotype. The BsmI and FokI polymorphisms of the VDR gene were associated with bone mass in growing adolescents, but the associations weakened with age. In young adults, the A986S polymorphism of the calcium sensing receptor gene was associated with serum ionized calcium concentrations, and the BstBI polymorphism of the parathyroid gene was related to bone strength. The FokI polymorphism and sodium intake showed an interaction effect on urinary calcium excretion. A novel gene-gene interaction between the VDR FokI and PTH BstBI gene polymorphisms was found in the regulation of PTH secretion and urinary calcium excretion. Further research should be carried out with more number of Finns at varying stages of the skeletal life span and more detailed measurements of bone strength. Research should concern mechanisms by which genetic variants affect calcium homeostasis and bone strength, and the role of diet-gene and gene-gene interactions in the pathogenesis of osteoporosis.
Resumo:
The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF = 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
Resumo:
It has long been known that various ignition criteria of energetic materials have been limited in applicability to small regions. In order to explore the physical nature of ignition, we calculated how much thermal energy per unit mass of energetic materials was absorbed under different external stimuli. Hence, data of several typical sensitivity tests were analyzed by order of magnitude estimation. Then a new concept on critical thermal energy density was formulated. Meanwhile, the chemical nature of ignition was probed into by chemical kinetics.
Resumo:
A variety of hydrogenated and non-hydrogenated amorphous carbon thin films have been characterized by means of grazing-incidence X-ray reflectivity (XRR) to give information about their density, thickness, surface roughness and layering. We used XRR to validate the density of ta-C, ta-C:H and a-C:H films derived from the valence plasmon in electron energy loss spectroscopy measurements, up to 3.26 and 2.39 g/cm3 for ta-C and ta-C:H, respectively. By comparing XRR and electron energy loss spectroscopy (EELS) data, we have been able for the first time to fit a common electron effective mass of m*/me = 0.87 for all amorphous carbons and diamond, validating the `quasi-free' electron approach to density from valence plasmon energy. While hydrogenated films are found to be substantially uniform in density across the film, ta-C films grown by the filtered cathodic vacuum arc (FCVA) show a multilayer structure. However, ta-C films grown with an S-bend filter show a high uniformity and only a slight dependence on the substrate bias of both sp3 and layering.
Resumo:
In the Philippines at present, milkfish farming in ponds includes a wide range of intensities, systems and practices. To make aquaculture possible, ecosystems are used as sources of energy and resources and as sinks for wastes. The growth of aquaculture is limited by the life-support functions of the ecosystem, and sustainability depends on matching the farming techniques with the processes and functions of the ecosystems, for example, by recycling some degraded resources. The fish farm has many interactions with the external environment. Serious environmental problems may be avoided if high-intensity farms are properly planned in the first place, at the farm level and at the level of the coastal zone where it can be integrated with other uses by other sectors. It is believed that the key to immediate success in the mass production of milkfish for local consumption and for export of value-added forms may be in semi-intensive farming at target yields of 3 tons per ha per year, double the current national average. Intensive milkfish farming will be limited by environmental, resource and market constraints. Integrated intensive farming systems are the appropriate long-term response to the triple needs of the next century: more food, more income, and more jobs for more people, all from less land, less resources, and less non-renewable energy.
Resumo:
Crystallization behavior and spherulitic structure of linear high-density polyethylene (HDPE), after being irradiated in its molten state by gamma -rays, was investigated by small-angle laser scattering (SALS) and differential scanning calorimetry (DSC). Significant changes in the crystallization of HDPE during cooling in air before and after being irradiated in the melt were observed. A critical minimum average molar mass between cross-links (200 carbon-carbon bonds) for spherulite formation in such an irradiated HDPE network was obtained.