959 resultados para Degradation pathway
Resumo:
L’autophagie est une voie hautement conservée de dégradation lysosomale des constituants cellulaires qui est essentiel à l’homéostasie cellulaire et contribue à l’apprêtement et à la présentation des antigènes. Les rôles relativement récents de l'autophagie dans l'immunité innée et acquise sous-tendent de nouveaux paradigmes immunologiques pouvant faciliter le développement de nouvelles thérapies où la dérégulation de l’autophagie est associée à des maladies auto-immunes. Cependant, l'étude in vivo de la réponse autophagique est difficile en raison du nombre limité de méthodes d'analyse pouvant fournir une définition dynamique des protéines clés impliquées dans cette voie. En conséquence, nous avons développé un programme de recherche en protéomique intégrée afin d’identifier et de quantifier les proteines associées à l'autophagie et de déterminer les mécanismes moléculaires régissant les fonctions de l’autophagosome dans la présentation antigénique en utilisant une approche de biologie des systèmes. Pour étudier comment l'autophagie et la présentation antigénique sont activement régulés dans les macrophages, nous avons d'abord procédé à une étude protéomique à grande échelle sous différentes conditions connues pour stimuler l'autophagie, tels l’activation par les cytokines et l’infection virale. La cytokine tumor necrosis factor-alpha (TNF-alpha) est l'une des principales cytokines pro-inflammatoires qui intervient dans les réactions locales et systémiques afin de développer une réponse immune adaptative. La protéomique quantitative d'extraits membranaires de macrophages contrôles et stimulés avec le TNF-alpha a révélé que l'activation des macrophages a entrainé la dégradation de protéines mitochondriales et des changements d’abondance de plusieurs protéines impliquées dans le trafic vésiculaire et la réponse immunitaire. Nous avons constaté que la dégradation des protéines mitochondriales était sous le contrôle de la voie ATG5, et était spécifique au TNF-alpha. En outre, l’utilisation d’un nouveau système de présentation antigènique, nous a permi de constater que l'induction de la mitophagie par le TNF-alpha a entrainée l’apprêtement et la présentation d’antigènes mitochondriaux par des molécules du CMH de classe I, contribuant ainsi la variation du répertoire immunopeptidomique à la surface cellulaire. Ces résultats mettent en évidence un rôle insoupçonné du TNF-alpha dans la mitophagie et permet une meilleure compréhension des mécanismes responsables de la présentation d’auto-antigènes par les molécules du CMH de classe I. Une interaction complexe existe également entre infection virale et l'autophagie. Récemment, notre laboratoire a fourni une première preuve suggérant que la macroautophagie peut contribuer à la présentation de protéines virales par les molécules du CMH de classe I lors de l’infection virale par l'herpès simplex virus de type 1 (HSV-1). Le virus HSV1 fait parti des virus humains les plus complexes et les plus répandues. Bien que la composition des particules virales a été étudiée précédemment, on connaît moins bien l'expression de l'ensemble du protéome viral lors de l’infection des cellules hôtes. Afin de caractériser les changements dynamiques de l’expression des protéines virales lors de l’infection, nous avons analysé par LC-MS/MS le protéome du HSV1 dans les macrophages infectés. Ces analyses nous ont permis d’identifier un total de 67 protéines virales structurales et non structurales (82% du protéome HSV1) en utilisant le spectromètre de masse LTQ-Orbitrap. Nous avons également identifié 90 nouveaux sites de phosphorylation et de dix nouveaux sites d’ubiquitylation sur différentes protéines virales. Suite à l’ubiquitylation, les protéines virales peuvent se localiser au noyau ou participer à des événements de fusion avec la membrane nucléaire, suggérant ainsi que cette modification pourrait influer le trafic vésiculaire des protéines virales. Le traitement avec des inhibiteurs de la réplication de l'ADN induit des changements sur l'abondance et la modification des protéines virales, mettant en évidence l'interdépendance des protéines virales au cours du cycle de vie du virus. Compte tenu de l'importance de la dynamique d'expression, de l’ubiquitylation et la phosphorylation sur la fonction des proteines virales, ces résultats ouvriront la voie vers de nouvelles études sur la biologie des virus de l'herpès. Fait intéressant, l'infection HSV1 dans les macrophages déclenche une nouvelle forme d'autophagie qui diffère remarquablement de la macroautophagie. Ce processus, appelé autophagie associée à l’enveloppe nucléaire (nuclear envelope derived autophagy, NEDA), conduit à la formation de vésicules membranaires contenant 4 couches lipidiques provenant de l'enveloppe nucléaire où on retrouve une grande proportion de certaines protéines virales, telle la glycoprotéine B. Les mécanismes régissant NEDA et leur importance lors de l’infection virale sont encore méconnus. En utilisant un essai de présentation antigénique, nous avons pu montrer que la voie NEDA est indépendante d’ATG5 et participe à l’apprêtement et la présentation d’antigènes viraux par le CMH de classe I. Pour comprendre l'implication de NEDA dans la présentation des antigènes, il est essentiel de caractériser le protéome des autophagosomes isolés à partir de macrophages infectés par HSV1. Aussi, nous avons développé une nouvelle approche de fractionnement basé sur l’isolation de lysosomes chargés de billes de latex, nous permettant ainsi d’obtenir des extraits cellulaires enrichis en autophagosomes. Le transfert des antigènes HSV1 dans les autophagosomes a été determine par protéomique quantitative. Les protéines provenant de l’enveloppe nucléaire ont été préférentiellement transférées dans les autophagosome lors de l'infection des macrophages par le HSV1. Les analyses protéomiques d’autophagosomes impliquant NEDA ou la macroautophagie ont permis de decouvrir des mécanismes jouant un rôle clé dans l’immunodominance de la glycoprotéine B lors de l'infection HSV1. Ces analyses ont également révélées que diverses voies autophagiques peuvent être induites pour favoriser la capture sélective de protéines virales, façonnant de façon dynamique la nature de la réponse immunitaire lors d'une infection. En conclusion, l'application des méthodes de protéomique quantitative a joué un rôle clé dans l'identification et la quantification des protéines ayant des rôles importants dans la régulation de l'autophagie chez les macrophages, et nous a permis d'identifier les changements qui se produisent lors de la formation des autophagosomes lors de maladies inflammatoires ou d’infection virale. En outre, notre approche de biologie des systèmes, qui combine la protéomique quantitative basée sur la spectrométrie de masse avec des essais fonctionnels tels la présentation antigénique, nous a permis d’acquérir de nouvelles connaissances sur les mécanismes moléculaires régissant les fonctions de l'autophagie lors de la présentation antigénique. Une meilleure compréhension de ces mécanismes permettra de réduire les effets nuisibles de l'immunodominance suite à l'infection virale ou lors du développement du cancer en mettant en place une réponse immunitaire appropriée.
Resumo:
Les fichiers accompagnant le document sont en format Microsoft Excel 2010.
Resumo:
L'arthrose est la maladie musculo-squelettique la plus commune dans le monde. Elle est l'une des principales causes de douleur et d’incapacité chez les adultes, et elle représente un fardeau considérable sur le système de soins de santé. L'arthrose est une maladie de l’articulation entière, impliquant non seulement le cartilage articulaire, mais aussi la synoviale, les ligaments et l’os sous-chondral. L’arthrose est caractérisée par la dégénérescence progressive du cartilage articulaire, la formation d’ostéophytes, le remodelage de l'os sous-chondral, la détérioration des tendons et des ligaments et l'inflammation de la membrane synoviale. Les traitements actuels aident seulement à soulager les symptômes précoces de la maladie, c’est pour cette raison que l'arthrose est caractérisée par une progression presque inévitable vers la phase terminale de la maladie. La pathogénie exacte de l'arthrose est encore inconnue, mais on sait que l'événement clé est la dégradation du cartilage articulaire. Le cartilage articulaire est composé uniquement des chondrocytes; les cellules responsables de la synthèse de la matrice extracellulaire et du maintien de l'homéostasie du cartilage articulaire. Les chondrocytes maintiennent la matrice du cartilage en remplaçant les macromolécules dégradées et en répondant aux lésions du cartilage et aux dégénérescences focales en augmentant l'activité de synthèse locale. Les chondrocytes ont un taux faible de renouvellement, c’est pour cette raison qu’ils utilisent des mécanismes endogènes tels que l'autophagie (un processus de survie cellulaire et d’adaptation) pour enlever les organelles et les macromolécules endommagés et pour maintenir l'homéostasie du cartilage articulaire. i L'autophagie est une voie de dégradation lysosomale qui est essentielle pour la survie, la différenciation, le développement et l’homéostasie. Elle régule la maturation et favorise la survie des chondrocytes matures sous le stress et des conditions hypoxiques. Des études effectuées par nous et d'autres ont montré qu’un dérèglement de l’autophagie est associé à une diminution de la chondroprotection, à l'augmentation de la mort cellulaire et à la dégénérescence du cartilage articulaire. Carames et al ont montré que l'autophagie est constitutivement exprimée dans le cartilage articulaire humain normal. Toutefois, l'expression des inducteurs principaux de l'autophagie est réduite dans le vieux cartilage. Nos études précédentes ont également identifié des principaux gènes de l’autophagie qui sont exprimés à des niveaux plus faibles dans le cartilage humain atteint de l'arthrose. Les mêmes résultats ont été montrés dans le cartilage articulaire provenant des modèles de l’arthrose expérimentaux chez la souris et le chien. Plus précisément, nous avons remarqué que l'expression d’Unc-51 like kinase-1 (ULK1) est faible dans cartilage humain atteint de l'arthrose et des modèles expérimentaux de l’arthrose. ULK1 est la sérine / thréonine protéine kinase et elle est l’inducteur principal de l’autophagie. La perte de l’expression de ULK1 se traduit par un niveau d’autophagie faible. Etant donné qu’une signalisation adéquate de l'autophagie est nécessaire pour maintenir la chondroprotection ainsi que l'homéostasie du cartilage articulaire, nous avons proposé l’hypothèse suivante : une expression adéquate de ULK1 est requise pour l’induction de l’autophagie dans le cartilage articulaire et une perte de cette expression se traduira par une diminution de la chondroprotection, et une augmentation de la mort des chondrocytes ce qui conduit à la dégénérescence du cartilage articulaire. Le rôle exact de ULK1 dans la pathogénie de l'arthrose est inconnue, j’ai alors créé pour la première fois, des souris KO ULK1spécifiquement dans le cartilage en utilisant la technologie Cre-Lox et j’ai ensuite soumis ces souris à la déstabilisation du ménisque médial (DMM), un modèle de l'arthrose de la souris pour élucider le rôle spécifique in vivo de ULK1 dans pathogenèse de l'arthrose. Mes résultats montrent que ULK1 est essentielle pour le maintien de l'homéostasie du cartilage articulaire. Plus précisément, je montre que la perte de ULK1 dans le cartilage articulaire a causé un phénotype de l’arthrose accéléré, associé à la dégénérescence accélérée du cartilage, l’augmentation de la mort cellulaire des chondrocytes, et l’augmentation de l'expression des facteurs cataboliques. En utilisant des chondrocytes provenant des patients atteints de l’arthrose et qui ont été transfectées avec le plasmide d'expression ULK1, je montre qu’ULK1 est capable de réduire l’expression de la protéine mTOR (principal régulateur négatif de l’autophagie) et de diminuer l’expression des facteurs cataboliques comme MMP-13 et ADAMTS-5 et COX-2. Mes résultats jusqu'à présent indiquent que ULK1 est une cible thérapeutique potentielle pour maintenir l'homéostasie du cartilage articulaire.
Resumo:
Based on the genetic analysis of the phytopathogen Xylella fastidiosa genome, five media with defined composition were developed and the growth abilities of this fastidious prokaryote were evaluated in liquid media and on solid plates. All media had a common salt composition and included the same amounts of glucose and vitamins but differed in their amino acid content. XDM1 medium contained amino acids threonine, serine, glycine, alanine, aspartic acid and glutamic acid, for which complete degradation pathways occur in X fastidiosa; XDM2 included serine and methionine, amino acids for which biosynthetic enzymes are absent, plus asparagine and glutamine, which are abundant in the xylem sap; XDM3 had the same composition as XDM2 but with asparagine replaced by aspartic acid due to the presence of complete degradation pathway for aspartic acid; XDM4 was a minimal medium with glutamine as a sole nitrogen source; XDM5 had the same composition as XDM4, plus methionine. The liquid and solidified XDM2 and XDM3 media were the most effective for the growth of X. fastidiosa. This work opens the opportunity for the in silico design of bacterial defined media once their genome is sequenced. (C) 2002 Federation of European Microbiological Societies. Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cunha TF, Moreira JB, Paixao NA, Campos JC, Monteiro AW, Bacurau AV, Bueno CR Jr., Ferreira JC, Brum PC. Aerobic exercise training upregulates skeletal muscle calpain and ubiquitin-proteasome systems in healthy mice. J Appl Physiol 112: 1839-1846, 2012. First published March 29, 2012; doi:10.1152/japplphysiol.00346.2011.-Aerobic exercise training (AET) is an important mechanical stimulus that modulates skeletal muscle protein turnover, leading to structural rearrangement. Since the ubiquitin-proteasome system (UPS) and calpain system are major proteolytic pathways involved in protein turnover, we aimed to investigate the effects of intensity-controlled AET on the skeletal muscle UPS and calpain system and their association to training-induced structural adaptations. Long-lasting effects of AET were studied in C57BL/6J mice after 2 or 8 wk of AET. Plantaris cross-sectional area (CSA) and capillarization were assessed by myosin ATPase staining. mRNA and protein expression levels of main components of the UPS and calpain system were evaluated in plantaris by real-time PCR and Western immunoblotting, respectively. No proteolytic system activation was observed after 2 wk of AET. Eight weeks of AET resulted in improved running capacity, plantaris capillarization, and CSA. Muscle RING finger-1 mRNA expression was increased in 8-wk-trained mice. Accordingly, elevated 26S proteasome activity was observed in the 8-wk-trained group, without accumulation of ubiquitinated or carbonylated proteins. In addition, calpain abundance was increased by 8 wk of AET, whereas no difference was observed in its endogenous inhibitor calpastatin. Taken together, our findings indicate that skeletal muscle enhancements, as evidenced by increased running capacity, plantaris capillarization, and CSA, occurred in spite of the upregulated UPS and calpain system, suggesting that overactivation of skeletal muscle proteolytic systems is not restricted to atrophying states. Our data provide evidence for the contribution of the UPS and calpain system to metabolic turnover of myofibrillar proteins and skeletal muscle adaptations to AET.
Resumo:
A microorganism was isolated which could grow on unusually high concentrations of the toxic pollutant 4-chlorophenol. Taxonomic studies showed that the microorganism constituted a novel species within the genus Arthrobacter and it was named Arthrobacter chlorophenolicus A6. A. chlorophenolicus A6 was chromosomally tagged with either the gfp gene, encoding the green fluorescent protein (GFP), or the luc gene, encoding firefly luciferase. When the tagged cells were inoculated into 4-chlorophenol contaminated soil they could completely remove 175 µg/g 4-chlorophenol within 10 days, whereas no loss of 4-chlorophenol was observed in the uninoculated control microcosms. During these experiments the gfp and luc marker genes allowed monitoring of cell number and metabolic status. When A. chlorophenolicus A6 was grown on mixtures of phenolic compounds, the strain exhibited a preference for 4-nitrophenol over 4-chlorophenol, which in turn was preferred over phenol. Analysis of growth and degradation data indicated that the same enzyme system was used for removal of 4-chlorophenol and 4-nitrophenol. However, degradation of unbstituted phenol appeared to be mediated by another or an additional enzyme system. The luc-tagged A. chlorophenolicus A6 gave valuable information about growth, substrate depletion and toxicity of the phenolic compounds in substrate mixtures. The 4-chlorophenol degradation pathway in A. chlorophenolicus A6 was elucidated. The metabolic intermediate subject to ring cleavage was found to be hydroxyquinol and two different pathway branches led from 4-chlorophenol to hydroxyquinol. A gene cluster involved in 4-chlorophenol degradation was cloned from A. chlorophenolicus A6. The cluster contained two functional hydroxyquinol 1,2-dioxygenase genes and a number of other open reading frames presumed to encode enzymes involved in 4-chlorophenol catabolism. Analysis of the DNA sequence suggested that the gene cluster had partly been assembled by horizontal gene transfer. In summary, 4-chlorophenol degradation by A. chlorophenolicus A6 was studied from a number of angles. This organism has several interesting and useful traits such as the ability to degrade high concentrations of 4-chlorophenol and other phenols alone and in mixtures, an unusual and effective 4-chlorophenol degradation pathway and demonstrated ability to remove 4-chlorophenol from contaminated soil.
Resumo:
Bioremediation implies the use of living organisms, primarily microorganisms, to convert environmental contaminants into less toxic forms. The impact of the consequences of hydrocarbon release in the environment maintain a high research interest in the study of microbial metabolisms associated with the biodegradation of aromatic and aliphatic hydrocarbons but also in the analysis of microbial enzymes that can convert petroleum substrates to value-added products. The studies described in this Thesis fall within the research field that directs the efforts into identifying gene/proteins involved in the catabolism of n-alkanes and into studying the regulatory mechanisms leading to their oxidation. In particular the studies were aimed at investigating the molecular aspects of the ability of Rhodococcus sp. BCP1 to grow on aliphatic hydrocarbons as sole carbon and energy sources. We studied the ability of Rhodococcus sp. BCP1 to grow on gaseous (C2-C4), liquid (C5-C16) and solid (C17-C28) n-alkanes that resulted to be biochemically correlated with the activity of one or more monooxygenases. In order to identify the alkane monooxygenase that is involved in the n-alkanes degradation pathway in Rhodococcus sp. BCP1, PCR-based methodology was applied by using degenerate primers targeting AlkB monooxygenase family members. As result, a chromosomal region, including the alkB gene cluster, was cloned from Rhodococcus sp. BCP1 genome. We characterized the products of this alkB gene cluster and the products of the orfs included in the flanking regions by comparative analysis with the homologues in the database. alkB gene expression studies were carried out by RT-PCR and by the construction of a promoter probe vector containing the lacZ gene downstream of the alkB promoter. B-galactosidase assays revealed the alkB promoter activity induced by n-alkanes and by n-alkanes metabolic products. Furthermore, the transcriptional start of alkB gene was determined by primer extension procedure. A proteomic approach was subsequently applied to compare the protein patterns expressed by BCP1 growing on n-butane, n-hexane, n-hexadecane or n-eicosane with the protein pattern expressed by BCP1 growing on succinate. The accumulation of enzymes specifically induced on n-alkanes was determined. These enzymes were identified by tandem mass spectrometry (LC/MS/MS). Finally, a prm gene, homologue to the gene family coding for soluble di-iron monooxygenases (SDIMOs), has been isolated from Rhodococcus sp. BCP1 genome. This gene product could be involved in the degradation of gaseous n-alkanes in this Rhodococcus strain. The versatility in utilizing hydrocarbons and the discovery of new remarkable metabolic activities outline the potential applications of this microorganism in environmental and industrial biotechnologies.
Resumo:
L’infiammazione cronica è un fattore di rischio di insorgenza del cancro, e la citochina infiammatoria IL-6 gioca un ruolo importante nella tumorigenesi. In questo studio abbiamo dimostrato che L’IL-6 down-regola l'espressione e l'attività di p53. In linee cellulari umane, IL-6 stimola la trascrizione dell’rRNA mediante espressione della proteina c-myc a livello post-trascrizionale in un meccanismo p38MAPK-dipendente. L'up-regolazione della biogenesi ribosomiale riduce l'espressione di p53 attraverso l'attivazione della via della proteina ribosomale-MDM2. La down-regolazione di p53 produce l’acquisizione di modifiche fenotipiche e funzionali caratteristiche della epitelio mesenchimale di transizione, un processo associato a trasformazione maligna e progressione tumorale. I nostri dati mostrano che questi cambiamenti avvengono anche nelle cellule epiteliali del colon di pazienti affetti da colite ulcerosa, un esempio rappresentativo di una infiammazione cronica soggetta a trasformazione neoplastica, che scompaiono dopo trattamento con farmaci antinfiammatori. Questi risultati svelano un nuovo effetto oncogenico indotto dall’IL-6 che può contribuire notevolmente ad aumentare il rischio di sviluppare il cancro non solo in pazienti con infiammazioni croniche, ma anche in quei pazienti con condizioni patologiche caratterizzate da elevato livello di IL-6 nel plasma, quali l'obesità e e il diabete mellito di tipo 2.
Resumo:
Die Proteinhomöostase wird in der Zelle von drei Stoffwechselwegen reguliert: den molekularen Chaperonen, dem Ubiquitin-Proteasom-System und dem autophagosomalen Abbauweg. Die (Makro)Autophagie verpackt und transportiert zytosolische Komponenten in Autophagosomen zu den Lysosomen, wo sie abgebaut werden. Eine Störung dieses Abbauwegs wirkt auf die Proteostase.rnIn dieser Dissertation wurde C. elegans als Modellorganismus zur Erforschung von Proteinstabilität genutzt. In einer RNAi-vermittelten Proteostase-Analyse von Chromosom I und ausgewählter zusätzlicher Gene wurde ein Wurmstamm, der ein Luc::GFP-Konstrukt im Muskel exprimiert, genutzt. Dieses Reporterprotein aggregiert unter Hitzestressbedingungen und diese Aggregation kann durch Modulatoren der Proteostase beeinflusst werden. Dabei wurden mögliche neue Faktoren der Proteinhomöostase entdeckt. Durch weitere Experimente bei denen die Aggregation von PolyQ35::YFP im AM140-System, der Paralyse-Phänotyp und die Akkumulation Thioflavin S-gefärbter Aggregate von Aβ42 im CL2006-Wurmstamm und die Effekte auf die Autophagie mittels eines GFP::LGG1-Konstrukt analysiert wurden, konnten rbg-1 und rbg-2 als neue Modulatoren der Proteinhomöostase, insbesondere der Autophagie, identifiziert werden.rnIm Säuger bilden beide Orthologe dieser Gene, RAB3GAP1 und RAB3GAP2 den heterodimeren RAB3GAP-Komplex, der bisher nur bekannt war für die Stimulation der Umwandlung der GTP-gebundenen aktiven Form zur GDP-gebundenen inaktiven Form der RAB GTPase RAB3. In Immunoblot-Analysen und mikroskopischen Darstellungen im Säugersystem konnte gezeigt werden, dass die Effekte auf die Proteostase über den autophagosomalen Abbauweg wirken. RAB3GAP1/2 wirken als positive Stimulatoren, wenn die Lipidierung von LC3-I und der autophagische Flux von LC3-II und p62/SQSTM1 betrachtet werden. Diese Effekte werden aber nicht über die RAB GTPase RAB3 vermittelt. Die Proteine FEZ1 und FEZ2 haben einen antagonistischen Effekt auf die Autophagie und wenn alle vier Komponenten RAB3GAP1, RAB3GAP2, FEZ1 und FEZ2 zusammen herunter- oder hochreguliert werden, heben sich diese Effekte auf. In Co-Immunopräzipitationen und proteomischen Analysen konnte keine direkte Interaktion zwischen dem RAB3GAP-Komplex und FEZ1/2 oder zu anderen Autophagie-Genen nachgewiesen werden.rnHier konnte der RAB3GAP-Komplex funktionell mit Proteostase und Autophagie in C. elegans und Säugerzellen assoziiert werden. Dieser Komplex zeigt Einflüsse auf die autophagosomale Biogenese indem sie die Proteostase und die Bildung von (prä)autophagosomalen Strukturen in C. elegans und die Lipidierung von LC3 und damit den autophagischen Flux der Autophagiesubstrate LC3-II und p62/SQSTM1 in Säugerzellen beeinflusst. Darüber hinaus wirkt RAB3GAP der komplexen Autophagie-Unterdrückung durch FEZ1 und FEZ2 entgegen. Somit konnte gezeigt werden, dass RAB3GAP als neuartiger Faktor auf die autophagosomale Biogenese und somit auf die Proteostase wirkt.rn
Resumo:
Autophagy is a lysosomal bulk degradation pathway for cytoplasmic cargo, such as long-lived proteins, lipids, and organelles. Induced upon nutrient starvation, autophagic degradation is accomplished by the concerted actions of autophagy-related (ATG) proteins. Here we demonstrate that two ATGs, human Atg2A and Atg14L, colocalize at cytoplasmic lipid droplets (LDs) and are functionally involved in controlling the number and size of LDs in human tumor cell lines. We show that Atg2A is targeted to cytoplasmic ADRP-positive LDs that migrate bidirectionally along microtubules. The LD localization of Atg2A was found to be independent of the autophagic status. Further, Atg2A colocalized with Atg14L under nutrient-rich conditions when autophagy was not induced. Upon nutrient starvation and dependent on phosphatidylinositol 3-phosphate [PtdIns(3)P] generation, both Atg2A and Atg14L were also specifically targeted to endoplasmic reticulum-associated early autophagosomal membranes, marked by the PtdIns(3)P effectors double-FYVE containing protein 1 (DFCP1) and WD-repeat protein interacting with phosphoinositides 1 (WIPI-1), both of which function at the onset of autophagy. These data provide evidence for additional roles of Atg2A and Atg14L in the formation of early autophagosomal membranes and also in lipid metabolism.
Resumo:
Acute myeloid leukemia (AML) is characterized by the accumulation of immature blood cell precursors in the bone marrow. Pharmacologically overcoming the differentiation block in this condition is an attractive therapeutic avenue, which has achieved success only in a subtype of AML, acute promyelocytic leukemia (APL). Attempts to emulate this success in other AML subtypes have thus far been unsuccessful. Autophagy is a conserved protein degradation pathway with important roles in mammalian cell differentiation, particularly within the hematopoietic system. In the study described here, we investigated the functional importance of autophagy in APL cell differentiation. We found that autophagy is increased during all-trans-retinoic acid (ATRA)-induced granulocytic differentiation of the APL cell line NB4 and that this is associated with increased expression of LC3II and GATE-16 proteins involved in autophagosome formation. Autophagy inhibition, using either drugs (chloroquine/3-methyladenine) or short-hairpin RNA targeting the essential autophagy gene ATG7, attenuates myeloid differentiation. Importantly, we found that enhancing autophagy promotes ATRA-induced granulocytic differentiation of an ATRA-resistant derivative of the non-APL AML HL60 cell line (HL60-Diff-R). These data support the development of strategies to stimulate autophagy as a novel approach to promote differentiation in AML.
Resumo:
INTRODUCTION Fibrinogen storage disease (FSD) is characterized by hypofibrinogenemia and hepatic inclusions due to impaired release of mutant fibrinogen which accumulates and aggregates in the hepatocellular endoplasmic reticulum. Liver disease is variable. AIM We studied a new Swiss family with fibrinogen Aguadilla. In order to understand the molecular peculiarity of FSD mutations, fibrinogen Aguadilla and the three other causative mutations, all located in the γD domain, were modelled. METHOD The proband is a Swiss girl aged 4 investigated because of fatigue and elevated liver enzymes. Protein structure models were prepared using the Swiss-PdbViewer and POV-Ray software. RESULTS The proband was found to be heterozygous for fibrinogen Aguadilla: FGG Arg375Trp. Familial screening revealed that her mother and maternal grandmother were also affected and, in addition, respectively heterozygous and homozygous for the hereditary haemochromatosis mutation HFE C282Y. Models of backbone and side-chain interactions for fibrinogen Aguadilla in a 10-angstrom region revealed the loss of five H-bonds and the gain of one H-bond between structurally important amino acids. The structure predicted for fibrinogen Angers showed a novel helical structure in place of hole 'a' on the outer edge of γD likely to have a negative impact on fibrinogen assembly and secretion. CONCLUSION The mechanism by which FSD mutations generate hepatic intracellular inclusions is still not clearly established although the promotion of aberrant intermolecular strand insertions is emerging as a likely cause. Reporting new cases is essential in the light of novel opportunities of treatment offered by increasing knowledge of the degradation pathway and autophagy.