311 resultados para Deformity
Resumo:
Cam-type deformity of the proximal femur is a risk factor for the development of cam-type femoroacetabular impingement and a prearthrotic condition of the hip. The etiology of cam-type deformity remains unclear. There are a number of causes of cam-type deformity including sequellae of slipped capital femoral epiphysis, Legg-Calvé-Perthes disease or Perthes-like deformities, postinfectious, and traumatic. However, the majority of cam-type deformities arise without any apparent preexisting hip disease. These "idiopathic" cam-type deformities likely represent a majority of cases, and show clear racial and sex differences, as well as developmental and genetic influences. Idiopathic cam-type deformity also seems to be a distinct entity from residual or silent slipped capital femoral epiphysis, as well as osteoarthritis-induced osteophytes. In this paper we examine the different pathogenetic aspects of the proximal femur that contribute to cam-type deformity and/or symptomatic cam-type femoroacetabular impingement.
Resumo:
BACKGROUND Vigorous sporting activity during the growth years is associated with an increased risk of having a cam-type deformity develop. The underlying cause of this osseous deformity is unclear. One may speculate whether this is caused by reactive bone apposition in the region of the anterosuperior head-neck junction or whether sports activity alters the shape of and growth in the growth plate. If the latter is true, then one would expect athletes to show an abnormal shape of the capital growth plate (specifically, the epiphyseal extension) before and/or after physeal closure. QUESTIONS/PURPOSES We therefore raised three questions: (1) Do adolescent basketball players show abnormal epiphyseal extension? (2) Does the epiphyseal extension differ before and after physeal closure? (3) Is abnormal epiphyseal extension associated with high alpha angles? METHODS We performed a case-control comparative analysis of young (age range, 9-22 years) male elite basketball athletes with age-matched nonathletes, substratified by whether they had open or closed physes. We measured epiphyseal extension on radial-sequence MRI cuts throughout the cranial hemisphere from 9 o'clock (posterior) to 3 o'clock (anterior). Epiphyseal extension was correlated to alpha angle measurements at the same points. RESULTS Epiphyseal extension was increased in all positions in the athletes compared with the control group. On average, athletes showed epiphyseal extension of 0.67 to 0.83 versus 0.53 to 0.71 in control subjects. In the control group epiphyseal extension was increased at all measurement points in hips after physeal closure compared with before physeal closure. In contrast, the subgroup of athletes with a closed growth plate only had increased epiphyseal extension at the 3 o'clock position compared with the athletes with an open [corrected] growth plate (0.64-0.70). We observed a correlation between an alpha angle greater than 55° and greater epiphyseal extension in the anterosuperior femoral head quadrant: the corresponding Spearman r values were 0.387 (all hips) and 0.285 (alpha angle>55°) for the aggregate anterosuperior quadrant. CONCLUSIONS These findings suggest that a cam-type abnormality in athletes is a consequence of an alteration of the growth plate rather than reactive bone formation. High-level sports activity during growth may be a new and distinct risk factor for a cam-type deformity.
Resumo:
BACKGROUND In some hips with cam-type femoroacetabular impingement (FAI), we observed a morphology resembling a more subtle form of slipped capital femoral epiphysis (SCFE). Theoretically, the morphology in these hips should differ from hips with a primary cam-type deformity. QUESTIONS/PURPOSES We asked if (1) head-neck offset; (2) epiphyseal angle; and (3) tilt angle differ among hips with a slip-like morphology, idiopathic cam, hips after in situ pinning of SCFE, and normal hips; and (4) what is the prevalence of a slip-like morphology among cam-type hips? METHODS We retrospectively compared the three-dimensional anatomy of hips with a slip-like morphology (29 hips), in situ pinning for SCFE (eight hips), idiopathic cam deformity (171 hips), and 30 normal hips using radial MRI arthrography. Normal hips were derived from 17 asymptomatic volunteers. All other hips were recruited from a series of 277 hips (243 patients) seen at a specialized academic hip center between 2006 and 2010. Forty-one hips with isolated pincer deformity were excluded. Thirty-six of 236 hips had a known cause of cam impingement (secondary cam), including eight hips after in situ pinning of SCFE (postslip group). The 200 hips with a primary cam were separated in hips with a slip-like morphology (combination of positive fovea sign [if the neck axis did not intersect with the fovea capitis] and a tilt angle [between the neck axis and perpendicular to the basis of the epiphysis] exceeding 4°) and hips with an idiopathic cam. We evaluated offset ratio, epiphyseal angle (angle between the neck axis and line connecting the center of the femoral head and the point where the physis meets the articular surface), and tilt angle circumferentially around the femoral head-neck axis. Prevalence of slip-like morphology was determined based on the total of 236 hips with cam deformities. RESULTS Offset ratio was decreased anterosuperiorly in idiopathic cam, slip-like, and postslip (eg, 1 o'clock position with a mean offset ranging from 0.00 to 0.14; p < 0.001 for all groups) compared with normal hips (0.25 ± 0.06 [95% confidence interval, 0.13-0.37]) and increased posteroinferiorly in slip-like (eg, 8 o'clock position, 0.5 ± 0.09 [0.32-0.68]; p < 0.001) and postslip groups (0.55 ± 0.12 [0.32-0.78]; p < 0.001) and did not differ in idiopathic cam (0.32 ± 0.09 [0.15-0.49]; p = 0.323) compared with normal (0.31 ± 0.07 [0.18-0.44]) groups. Epiphyseal angle was increased anterosuperiorly in the slip-like (eg, 1 o'clock position, 70° ± 9° [51°-88°]; p < 0.001) and postslip groups (75° ± 13° [49°-100°]; p = 0.008) and decreased in idiopathic cam (50° ± 8° [35°-65°]; p < 0.001) compared with normal hips (58° ± 8° [43°-74°]). Posteroinferiorly, epiphyseal angle was decreased in slip-like (eg, 8 o'clock position, 54° ± 10° [34°-74°]; p < 0.001) and postslip (44° ± 11° [23°-65°]; p < 0.001) groups and did not differ in idiopathic cam (76° ± 8° [61°-91°]; p = 0.099) compared with normal (73° ± 7° [59°-88°]) groups. Tilt angle increased in slip-like (eg, 2/8 o'clock position, 14° ± 8° [-1° to 30°]; p < 0.001) and postslip hips (29° ± 10° [9°-48°]; p < 0.001) and decreased in hips with idiopathic cam (-7° ± 5° [-17° to 4°]; p < 0.001) compared with normal (-1° ± 5° [-10° to 8°]) hips. The prevalence of a slip-like morphology was 12%. CONCLUSIONS The slip-like morphology is the second most frequent pathomorphology in hips with primary cam deformity. MRI arthrography of the hip allows identifying a slip-like morphology, which resembles hips after in situ pinning of SCFE and distinctly differs from hips with idiopathic cam. These results support previous studies reporting that SCFE might be a risk factor for cam-type FAI.
Resumo:
Hips with a cam deformity are at risk for early cartilage degeneration, mainly in the anterolateral region of the joint. T1ρ MRI is a described technique for assessment of proteoglycan content in hyaline cartilage and subsequently early cartilage damage. In this study, 1.5 Tesla T1ρ MRI was performed on 20 asymptomatic hips with a cam deformity and compared to 16 healthy control hips. Cam deformity was defined as an alpha angle at 1:30 o'clock position over 60° and/or at 3:00 o'clock position over 50.5°. Hip cartilage was segmented and divided into four regions of interest (ROIs): anterolateral, anteromedial, posterolateral and posteromedial quadrants. Mean T1ρ value of the entire weight bearing cartilage in hips with a cam deformity (34.0 ± 4.6 ms) was significantly higher compared to control hips (31.3 ± 3.2 ms, p = 0.050). This difference reached significance in the anterolateral (p = 0.042) and posteromedial quadrants (p = 0.041). No significant correlation between the alpha angle and T1ρ values was detected. The results indicate cartilage damage occurs in hips with a cam deformity before symptoms occur. A significant difference in T1ρ values was found in the anterolateral quadrant, the area of direct engagement of the deformity, and in the posteromedial quadrant. To conclude, T1ρ MRI can detect early chondral damage in asymptomatic hips with a cam deformity. This article is protected by copyright. All rights reserved.
Resumo:
A qualitative, phenomenological, hermeneutical study with the aim of explaining the experience of having a body deformity diagnosed as idiopathic adolescent scoliosis. A semistructured interview conducted with scoliosis patients admitted to the unit of spinal cord at the Vall d’Hebron Hospital was used. The youth defined their scoliosis based on how they perceived their deformity. They spoke of pain and deformity as characteristic symptoms of suffering, and explained how this symptom affected their social relationships. Their deformity was associated with words such as “horrible”, “shame”, “complex” and “problem.” It is concluded that the symptommost referred is pain and the biggest concern of the youth was their body aesthetic and feelings associated with it. They attempt to solve this problem by adapting the way they dress and through surgery. Surgery can resolve the body deformity but not self-perception of their body image.
Resumo:
Congenital vertebral malformations are common in brachycephalic “screw-tailed” dog breeds such as French bulldogs, English bulldogs, Boston terriers, and Pugs. Those vertebral malformations disrupt the normal vertebral column anatomy and biomechanics, potentially leading to deformity of the vertebral column and subsequent neurological dysfunction. The initial aim of this work was to study and determine whether the congenital vertebral malformations identified in those breeds could be translated in a radiographic classification scheme used in humans to give an improved classification, with clear and well-defined terminology, with the expectation that this would facilitate future study and clinical management in the veterinary field. Therefore, two observers who were blinded to the neurologic status of the dogs classified each vertebral malformation based on the human classification scheme of McMaster and were able to translate them successfully into a new classification scheme for veterinary use. The following aim was to assess the nature and the impact of vertebral column deformity engendered by those congenital vertebral malformations in the target breeds. As no gold standard exists in veterinary medicine for the calculation of the degree of deformity, it was elected to adapt the human equivalent, termed the Cobb angle, as a potential standard reference tool for use in veterinary practice. For the validation of the Cobb angle measurement method, a computerised semi-automatic technique was used and assessed by multiple independent observers. They observed not only that Kyphosis was the most common vertebral column deformity but also that patients with such deformity were found to be more likely to suffer from neurological deficits, more especially if their Cobb angle was above 35 degrees.
Resumo:
A prospective, consecutive series of 106 patients receiving endoscopic anterior scoliosis correction. The aim was to analyse changes in radiographic parameters and rib hump in the two years following surgery. Endoscopic anterior scoliosis correction is a level sparing approach, therefore it is important to assess the amount of decompensation which occurs after surgery. All patients received a single anterior rod and vertebral body screws using a standard compression technique. Cleared disc spaces were packed with either mulched femoral head allograft or rib head/iliac crest autograft. Radiographic parameters (major, instrumented, minor Cobb, T5-T12 kyphosis) and rib hump were measured at 2,6,12 and 24 months after surgery. Paired t-tests and Wilcoxon signed ranks tests were used to assess the statistical significant of changes between adjacent time intervals.----- Results: Mean loss of major curve correction from 2 to 24 months after surgery was 4 degrees. Mean loss of rib hump correction was 1.4 degrees. Mean sagittal kyphosis increased from 27 degrees at 2 months to 30.6 degrees at 24 months. Rod fractures and screw-related complications resulted in several degrees less correction than patients without complications, but overall there was no clinically significant decompensation following complications. The study concluded that there are small changes in deformity measures after endoscopic anterior scoliosis surgery, which are statistically significant but not clinically significant.
Resumo:
Growth rods are commonly used for the treatment of scoliosis in the immature spine. Many variations have been proposed but breakage of implants is a common problem. Growth rod insertion commonly involves large exposures at initial insertion followed by multiple smaller procedures for lengthening. We present our early experiences using a percutaneous technique of insertion of a new titanium mobile bearing implant (Medtronic Inc). The implant allows some rotatory motion in the middle of the construct thus reducing construct stresses and thus possibly reducing rod breakage risk. Based on this small initial series with 12 months follow-up, percutaneous insertion of growth rods using the new implant is a safe and reliable technique although the infection rate in our sample was of note. This may be related to the titanium wear and inflammation seen in the soft tissues at time of operation and visualised on histology. No implants have required removal due to infection, and all infections were treated with debridement at next lengthening and suppressive antibiotics. Propionibacterium is one of the commonest infections seen with spinal implants and sometimes does not respond to simple antibiotic suppression. The technique allows preservation of the soft tissues until definitive fusion is needed and may lead to a decrease in hospital stay. The implant is low profile and seems to offer advantages over other systems on the market. Further follow up is needed to look at longer term outcomes with this new implant type.