962 resultados para Deformation-Mechanism
Resumo:
This study investigated the grain size dependence of mechanical properties and deformation mechanisms of microcrystalline (mc) and nanocrystalline (nc: grain size below 100 nm) Mg-5wt% Al alloys. The Hall-Petch relationship was investigated by both instrumented indentation tests and compression tests. The test results from the indentation tests and compression tests match well with each other. The breakdown of Hall-Petch relationship and the elevated strain rate sensitivity (SRS) of present Mg-5wt% Al alloys when the grain size was reduced below 58nm indicated the more significant role of GB mediated mechanisms in plastic deformation process. However, the relatively smaller SRS values compared to GB sliding and coble creep process suggested the plastic deformation in the current study is still dislocation mediated mechanism dominant.
Resumo:
Based on the embedded atom method (EAM) and molecular dynamics (MD) method, the deformation properties of Cu nanowires with different single defects under dynamic compression have been studied. The mechanical behaviours of the perfect nanowire are first studied, and the critical stress decreases with the increase of the nanowire’s length, which is well agreed with the modified Euler theory. We then consider the effects to the buckling phenomenon resulted from different defects. It is found that obvious decrease of the critical stress is resulted from different defects, and the largest decrease is found in nanowire with the surface vertical defect. Surface defects are found exerting larger influence than internal defects. The buckling duration is found shortened due to different defects except the nanowire with surface horizon defect, which is also found possessing the largest deflection. Different deflections are also observed for different defected nanowires. It is find that due to surface defects, only deflection in one direction is happened, but for internal defects, more complex deflection circumstances are observed.
Resumo:
Molecular dynamics (MD) simulations have been carried out to investigate the defect’s effect on the mechanical properties of copper nanowire with different crystallographic orientations, under tensile deformation. Three different crystallographic orientations have been considered. The deformation mechanism has been carefully discussed. It is found that the Young’s modulus is insensitive to the defect, even when the nanowire’s crystallographic orientation is different. However, due to the defect’s effect, the yield strength and yield strain appear a large decrease. The defects have played a role of dislocation sources, the slips or stacking faults are first generated around the locations of the defects. The necking locations have also been affected by different defects. Due to the surface defect, the plastic deformation has received a large influence for the <001>/{110} and <110> orientated nanowires, and a relative small influence is seen for the <111> nanowire.
Resumo:
Molecular dynamics (MD) simulations have been carried out to investigate the defect’s effect on the mechanical properties of single-crystal copper nanowire with different surface defects, under torsion deformation. The torsional rigidity is found insensitive to the surface defects and the critical angle appears an obvious decrease due to the surface defects, the largest decrease is found for the nanowire with surface horizon defect. The deformation mechanism appears different degrees of influence due to surface defects. The surface defects play a role of dislocation sources. Comparing with single intrinsic stacking faults formation for the perfect nanowire, much affluent deformation processes have been activated because of surface defects, for instance, we find the twins formation for the nanowire with a surface 45o defect.
Resumo:
Nanowires (NWs) have attracted intensive researches owing to the broad applications that arise from their remarkable properties. Over the last decade, immense numerical studies have been conducted for the numerical investigation of mechanical properties of NWs. Among these numerical simulations, the molecular dynamics (MD) plays a key role. Herein we present a brief review on the current state of the MD investigation of nanowires. Emphasis will be placed on the FCC metal NWs, especially the Cu NWs. MD investigations of perfect NWs’ mechanical properties under different deformation conditions including tension, compression, torsion and bending are firstly revisited. Following in succession, the studies for defected NWs including the defects of twin boundaries (TBs) and pre-existing defects are discussed. The different deformation mechanism incurred by the presentation of defects is explored and discussed. This review reveals that the numerical simulation is an important tool to investigate the properties of NWs. However, the substantial gaps between the experimental measurements and MD results suggest the urgent need of multi-scale simulation technique.
Resumo:
Magnesium alloys are attracting increasing research interests due to their low density, high specific strength, good machinability and availability as compared to other structural materials. However, the deformation and failure mechanisms of nanocrystalline (nc) Mg alloys have not been well understood. In this work, the deformation behaviour of nc Mg-5Al alloys was investigated using compression test, with focus on the effects of grain size. The average grain size of the Mg- Al alloy was changed from 13 to 50 nm via mechanical milling. The results showed that grain size had a significant influence on the yield stress and ductility of the Mg alloys, and the materials exhibited increased strain rate sensitivity with a decrease in grain size. The deformation mechanisms were also strongly dependent on the grain sizes.
Resumo:
The micro-circulation of blood plays an important role in human body by providing oxygen and nutrients to the cells and removing carbon dioxide and wastes from the cells. This process is greatly affected by the rheological properties of the Red Blood Cells (RBCs). Changes in the rheological properties of the RBCs are caused by certain human diseases such as malaria and sickle cell diseases. Therefore it is important to understand the motion and deformation mechanism of RBCs in order to diagnose and treat this kind of diseases. Although, many methods have been developed to explore the behavior of the RBCs in micro-channels, they could not explain the deformation mechanism of the RBCs properly. Recently developed Particle Methods are employed to explain the RBCs’ behavior in micro-channels more comprehensively. The main objective of this study is to critically analyze the present methods, used to model the RBC behavior in micro-channels, in order to develop a computationally efficient particle based model to describe the complete behavior of the RBCs in micro-channels accurately and comprehensively
Resumo:
Titanium alloys like Ti-6A-4V are the backbone materials for aerospace, energy and chemical industries. Hypoeutectic boron addition to Ti-6Al-4V alloy produces a reduction in as-cast grain size by roughly an order of magnitude resulting in the possibility of avoiding ingot breakdown step and thereby reducing the processing cost. In the present study, ISM processed as-cast boron added Ti-6Al-4V alloy is deformed in (alpha+beta)-phase field, where alpha-lath bending seemed to be the dominating deformation mechanism.
Resumo:
Microstructural stability is an important consideration during high temperature deformation and processing of nanomaterials. We will address issues relating to triple junctions in limiting grain growth during creep as well as densification. Although early studies on deformation have considered diffusion creep as a possible rate controlling deformation mechanism in nanocrystals, a critical inspection of available data indicates that there is no strong evidence for conventional diffusion creep in such materials. The possibility of diffusion creep by rapid diffusion along triple junctions will be analyzed, and interface controlled diffusion creep will also be discussed critically. It is shown that the critical grain size for dislocation activity is similar to that for occurrence of conventional diffusion creep.
Resumo:
In this paper, we demonstrate a way to impart severe plastic deformation to magnesium at room temperature to produce ultrafine grain size of similar to 250 nm through equal channel angular extrusion (ECAE). The strategy to deform magnesium at lower temperature or to achieve such grain sizes has been proposed as: (i) to obtain a suitable initial orientation with high Schmid factor for basal slip and low Schmid factor for pyramidal/prismatic slip; (ii) to take advantage of low stacking fault energy of basal and high stacking fault energies of prismatic/pyramidal planes in order to relatively work-harden the basal plane with respect to the pyramidal/prismatic plane; and (iii) to lower the temperature of deformation in steps, leading to continual refinement of grains, resulting in finer grain size. The experimental as well as simulated texture of ECAE-processed samples indicate that the deformation mechanism leading to ultrafine grain size is slip-dominated. The recrystallization mechanism during ECAE has been found to be orientation-dependent. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The nanoindentation technique has been employed to relate the mechanical properties of saccharin single crystals with their internal structure. Indentations were performed on (100) and (011) faces to assess the mechanical anisotropy. The load-displacement (P-h) curves indicate significant differences in the nature of the plastic deformation on the two faces. The P-h curves obtained on the (011) plane are smooth, reflecting homogeneous plasticity. However, displacement bursts (pop-ins) are observed in the P-h curves obtained on the (100) plane suggesting a discrete deformation mechanism. Marginal differences exist in the hardness and modulus on the two faces that may, in part, be rationalized, although one notes that saccharin has a largely three-dimensional close-packed structure. The structural origins of the fundamentally different deformation mechanisms on (100) and (011) are discussed in terms of the dimensionality of the hydrogen bonding networks. Down the (100) planes, the saccharin dimers are stacked and are stabilized by nonspecific van der Wants interactions mostly between aromatic rings. However, down the (011) planes, the molecules are stabilized by more directional and cross-linked C-H ... O hydrogen bonds. This anisotropy in crystal packing and interactions is reflected in the mechanical behavior on these faces. The displacements associated with the pop-ins were found to he integral multiples oldie molecule separation distances. Nanoindentation offers an opportunity to compare experimentally, and in a quantitative way, the various intermolecular interactions that fire present in a molecular crystal.
Resumo:
Lactose is probably the most used tablet excipient in the field of pharmacy. Although lactose is thoroughly characterized and available in many different forms there is a need to find a replacer for lactose as a filler/binder in tablet formulations because it has some downsides. Melibiose is a relatively unknown disaccharide that has not been thoroughly characterized and not previously used as an excipient in tablets. Structurally melibiose is close to lactose as it is also formed from the same two monosaccharides, glucose and galactose. Aim of this research is to characterize and to study physicochemical properties of melibiose. Also the potential of melibiose to be used as pharmaceutical tablet excipient, even as a substitute for lactose is evaluated. Current knowledge about fundamentals of tableting and methods for determinating of deformation behavior and tabletability are reviewed. In this research Raman spectroscopy, X-ray powder diffraction (XRPD), near-infrared spectroscopy (NIR) and Fourier-transform infrared spectroscopy (FT-IR) were used to study differences between two melibiose batches purchased from two suppliers. In NIR and FT-IR measurements no difference between materials could be observed. XPRD and Raman however found differences between the two melibiose batches. Also the effects of moisture content and heating to material properties were studied and moisture content of materials seems to cause some differences. Thermal analytical methods, differential scanning calorimetry (DSC) and thermogravimetry (TG) were used to study thermal behaviour of melibiose and difference between materials was found. Other melibiose batch contains residual water which evaporates at higher temperatures causing the differences in thermal behaviour. Scanning electron microscopy images were used to evaluate particle size, particle shape and morphology. Bulk, tapped and true densities and flow properties of melibiose was measured. Particle size of the melibiose batches are quite different resulting causing differences in the flowability. Instrumented tableting machine and compression simulator were used to evaluate tableting properties of melbiose compared to α-lactose monohydrate. Heckel analysis and strain-rate sensitivity index were used to determine deformation mechanism of melibiose monohydrate in relation to α–lactose monohydrate during compaction. Melibiose seems to have similar deformation behaviour than α-lactose monohydrate. Melibiose is most likely fragmenting material. Melibiose has better compactibility than α – lactose monohydrate as it produces tablets with higher tensile strength with similar compression pressures. More compression studies are however needed to confirm these results because limitations of this study.
Resumo:
The effect of 4.0 MeV proton irradiation on the microstructure and mechanical properties of nanocrystalline (nc) nickel was investigated. The irradiation damage induced in the sample was of the order of 0.004 dpa. Transmission electron microscopy of irradiated samples indicated the presence of dislocation loops within the grains. An increase in hardness and strain-rate sensitivity (m) of nc-Ni with irradiation was noted. The rate-controlling deformation mechanism in irradiated nc-Ni was identified to be interaction of dislocations with irradiation-induced defects. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Nanoindentation experiments were conducted on a Ni+ ion-irradiated Zr-based bulk metallic glass (BMG). The irradiation was carried out using 2.5, 5, 10 and 15 MeV ions and a flux of similar to 10(16) ions/cm(2). Post mortem imaging of the indents reveals a transition in the deformation mechanism of the irradiated regions from heterogeneous shear banding to homogeneous flow. Additionally, the load-displacement curves exhibit a transition from serrated to continuous flow with increasing severity of irradiation damage. The stress-strain response obtained from micro-pillar compression experiments complements the indentation response exhibiting a decrease in the flow stress and an `apparent' strain hardening at the lowest irradiation damage investigated, which is not observed in the as-cast alloy. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The tensile behavior of a high activity stand-alone Pt-aluminide (PtAl) bond coat was evaluated by the micro-tensile test method at various temperatures (room temperature to 1100 degrees C) and strain rates (10(-5) s(-1)-10(-1) s(-1).) At all strain rates, the stress strain behavior of the stand-alone coating was significantly affected by the variation in temperature. The stress strain response was linear, indicating brittle behavior, at temperatures below the brittle ductile transition temperature (BDTT). The coating exhibited appreciable ductility (up to 2%) above the BDTT. The strength (both yield stress and ultimate tensile strength) of the coating decreased and its ductility increased with increasing temperature above the BDTT. The tensile behavior of the coating was sensitive to strain rate in the ductile regime, with its strength increasing with increasing strain rate at any given temperature. The BDTT of the coating was found to increase with increasing with increasing strain rate. The coating exhibited two distinct mechanisms of deformation above the BDTT. The transition temperature for the change of deformation mechanism also increased with increasing strain rate. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.