994 resultados para Deformation structure


Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the results of an experimental and numerical study conducted on a closed-cell aluminium foam that was subjected to uniaxial compression with lateral constraint. X-ray computed tomography was utilized to gain access into the three-dimensional (3-D) structure of the foam and some aspects of the deformation mechanisms. A series of advanced 3-D image analyses are conducted on the 3-D images aimed at characterizing the strain localization regions. We identify the morphological/geometrical features that are responsible for the collapse of the cells and the strain localization. A novel mathematical approach based on a Minkowski tensor analysis along with the mean intercept length technique were utilized to search for signatures of anisotropy across the foam sample and its evolution as a function of loading. Our results show that regions with higher degrees of anisotropy in the undeformed foam have a tendency to initiate the onset of cell collapse. Furthermore, we show that strain hardening occurs predominantly in regions with large cells and high anisotropy. We combine the finite element method with the tomographic images to simulate the mechanical response of the foam. We predict further deformation in regions where the foam is already deformed. Crown Copyright (C) 2012 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Surface mass loads come in many different varieties, including the oceans, atmosphere, rivers, lakes, glaciers, ice caps, and snow fields. The loads migrate over Earth's surface on time scales that range from less than a day to many thousand years. The weights of the shifting loads exert normal forces on Earth's surface. Since the Earth is not perfectly rigid, the applied pressure deforms the shape of the solid Earth in a manner controlled by the material properties of Earth's interior. One of the most prominent types of surface mass loading, ocean tidal loading (OTL), comes from the periodic rise and fall in sea-surface height due to the gravitational influence of celestial objects, such as the moon and sun. Depending on geographic location, the surface displacements induced by OTL typically range from millimeters to several centimeters in amplitude, which may be inferred from Global Navigation and Satellite System (GNSS) measurements with sub-millimeter precision. Spatiotemporal characteristics of observed OTL-induced surface displacements may therefore be exploited to probe Earth structure. In this thesis, I present descriptions of contemporary observational and modeling techniques used to explore Earth's deformation response to OTL and other varieties of surface mass loading. With the aim to extract information about Earth's density and elastic structure from observations of the response to OTL, I investigate the sensitivity of OTL-induced surface displacements to perturbations in the material structure. As a case study, I compute and compare the observed and predicted OTL-induced surface displacements for a network of GNSS receivers across South America. The residuals in three distinct and dominant tidal bands are sub-millimeter in amplitude, indicating that modern ocean-tide and elastic-Earth models well predict the observed displacement response in that region. Nevertheless, the sub-millimeter residuals exhibit regional spatial coherency that cannot be explained entirely by random observational uncertainties and that suggests deficiencies in the forward-model assumptions. In particular, the discrepancies may reveal sensitivities to deviations from spherically symmetric, non-rotating, elastic, and isotropic (SNREI) Earth structure due to the presence of the South American craton.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Films obtained via drying a polymeric latex dispersion are normally colloidal crystalline where latex particles are packed into a face centered cubic (fcc) structure. Different from conventional atomic crystallites or hard sphere colloidal crystallites, the crystalline structure of these films is normally deformable due to the low glass transition temperature of the latex particles. Upon tensile deformation, depending on the drawing direction with respect to the normal of specific crystallographic plane, one observes different crystalline structural changes. Three typical situations where crystallographic c-axis, body diagonal or face diagonal of the fcc structure of the colloidal crystallites being parallel to the stretching direction were investigated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The inclusion of a synthetic fluoromica clay in PET affects its processability via biaxial stretching and stretching temperature (95 °C and 102 °C) and strain rate (1 s-1 and 2 s-1) influence the structuring and properties of the stretched material. The inclusion of clay has little effect on the temperature operating window for the PET–clay but it has a major effect on deformation behaviour which will necessitate the use of much higher forming forces during processing. The strain hardening behaviour of both the filled and unfilled materials is well correlated with tensile strength and tensile modulus. Increasing the stretching temperature to reduce stretching forces has a detrimental effect on clay exfoliation, mechanical and O2 barrier properties. Increasing strain rate has a lesser effect on the strain hardening behaviour of the PET–clay compared with the pure PET and this is attributed to possible adiabatic heating in the PET–clay sample at the higher strain rate. The Halpin–Tsai model is shown to accurately predict the modulus enhancement of the PET–clay materials when a modified particle modulus rather than nominal clay modulus is used.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mounting accuracy of satellite payload and ADCS (attitude determination and control subsystem) seats is one of the requirements to achieve the satellite mission with acceptable performance. Components of mounting inaccuracy are technological inaccuracies, residual plastic deformations after loading (during transportation and orbital insertion), elastic deformations, and thermal deformations during orbital operation. This paper focuses on estimation of thermal deformations of satellite structure. Thermal analysis is executed by applying finite-difference method (IDEAS) and temperature profile for satellite components case is evaluated. Then, Perform thermal finite-element analysis applying the finite-difference model results as boundary conditions; and calculate the resultant thermal strain. Next, applying the resultant thermal strain, perform finite-element structure analysis to evaluate structure deformations at the payload and ADCS equipments seats.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vickers and nano indentations were performed on a structurally relaxed Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG), and the evolution of the shear bands in the relaxed BMG was investigated and compared to that in the as-cast alloy. Results indicate that the plastic deformation in the BMG with structure relaxation is accommodated by the semicircular (primary) and radial (secondary) as well as tertiary shear bands. Quantitatively, the shear band density in the relaxed alloy was much lower than that in the as-cast alloy. The annihilation of free volume caused by the annealing was responsible for the embrittlement of the sample with structure relaxation.