968 resultados para Deep-sea fisheries
Resumo:
11 specimens of Coryphaenoides armatus were collected at former dumping sites for radioactive material in the Iberian deep sea at a depth of 4700 m and their muscle tissue was analysed for four trace elements (copper, zinc, cadmium and lead) by differential pulse anodic stripping voltammetry (DPSAV). Concentrations of zinc were typical for fish muscle in general; copper content was somewhat higher than generally found in fish. The cadmium and lead contents were at a level found in fish from the open sea but the lead content of 2 specimens taken in area East-B was found to be higher.
Resumo:
The configuration of semisubmersibles consisting of pontoons and columns and their corresponding heave motion response in incident progressive waves are examined. The purpose of the present study is to provide a theoretical approach to estimating the effects of volumetric allocation on natural period and response amplitude operator (RAO) in heave motion. We conclude that the amplitude of heave motion response can be considerably suppressed by appropriately adjusting volumetric allocation so that the natural heave period keeps away from the range of wave energy. The theoretical formulae are found in good agreement with the corresponding computational results by WAMIT.
Resumo:
This report provides a compilation of new maps and spatial assessments for seabirds, bathymetry, surficial sediments, deep sea corals, and oceanographic habitats in support of offshore spatial planning led by the New York Department of State Ocean and Great Lakes Program. These diverse ecological themes represent priority information gaps left by past assessments and were requested by New York to better understand and balance ocean uses and environmental conservation in the Atlantic. The main goal of this report is to translate raw ecological, geomorphological and oceanographic data into maps and assessments that can be easily used and understood by coastal managers involved in offshore spatial planning. New York plans to integrate information in this report with other ecological, geophysical and human use data to obtain a broad perspective on the ocean environment, human uses and their interactions. New York will then use this information in an ecosystem-based framework to coordinate and support decisions balancing competing demands in their offshore environment, and ultimately develop a series of amendments to New York’s federally approved Coastal Management Program. The targeted users of this report and the compiled spatial information are New York coastal managers, but other State and federal decision-makers, offshore renewable energy development interests and environmental advocates will also find the information useful. In addition, the data and approaches will be useful to regional spatial planning initiatives set up by the Mid-Atlantic Regional Council on the Ocean (MARCO) and federal regional planning bodies for coastal and marine spatial planning.
Resumo:
The sixth nominal species of Chaceon to be recorded from the western Indian Ocean is named from a specimen collected off Somalia in 504-506 meters. Chaceon somaliensis, n. sp., resembles C. macphersoni (Manning and Holthuis, 1988) and differs from the other four species known from the area in having the dactylus of the walking legs dorsoventrally depressed. It differs from C. macphersoni in having slenderer legs, a smoother body, and a much deeper, evenly curved orbit.
Resumo:
Charles Darwin the research ship undertook an Oceanographic Cruise in 1986, CD 86/17 of the North Arabian Sea. Sediment cores were collected between 15° and 25°N. In this study sediment cores collected from deep Indus and Oman basins (CD 1715, CD 1730, CD 1738) have been analyzed for mineralogy, water content and porosity. In general, the cores are mainly composed of clay to silt sized terrigenous and biogenic constituents. Quartz, Chlorite and Illite are the common minerals of Arabian Sea sediments. Porosity determined by water content of sediments has been correlated with quartz/chlorite and quartz/illite peak ratios to show a relationship between mineral composition and physical properties.
Resumo:
A new constitutive model called Methane Hydrate Critical State (MHCS) model was conducted to investigate the geomechanical response of the gas-hydrate-bearing sediments at the Nankai Trough during the wellbore construction process. The strength and dilatancy of gas-hydrate-bearing soil would gradually disappear when the bonds are destroyed because of excessively shearing, which are often observed in dense soils and also in bonded soils such as cemented soil and unsaturated soil. In this study, the MHCS model, which presents such softening features, would be incorporated into a staged-finite-element model in ABAQUS, which mainly considered the loading history of soils and the interaction between cement-casing-formation. This model shows the influence of gas-hydrate-bearing soil to the deformation and stability of a wellbore and the surrounding sediments during wellbore construction. At the same time, the conventional Mohr-Coulomb model was used in the model to show the advantages of MHCS model by comparing the results of the two models.
Resumo:
The giant basal spicules of the siliceous sponges Monorhaphis chuni and Monorhaphis intermedia (Hexactinellida) represent the largest biosilica structures on earth (up to 3 m long). Here we describe the construction (lamellar organization) of these spicules and of the comitalia and highlight their organic matrix in order to understand their mechanical properties. The spicules display three distinct regions built of biosilica: (i) the outer lamellar zone (radius: >300 mu m), (ii) the bulky axial cylinder (radius: <75 mu m), and (iii) the central axial canal (diameter: <2 mu m) with its organic axial filament. The spicules are loosely covered with a collagen net which is regularly perforated by 7-10 mu m large holes; the net can be silicified. The silica layers forming the lamellar zone are approximate to 5 mu m thick; the central axial cylinder appears to be composed of almost solid silica which becomes porous after etching with hydrofluoric acid (HF). Dissolution of a complete spicule discloses its complex structure with distinct lamellae in the outer zone (lamellar coating) and a more resistant central part (axial barrel). Rapidly after the release of the organic coating from the lamellar zone the protein layers disintegrate to form irregular clumps/aggregates. In contrast, the proteinaceous axial barrel, hidden in the siliceous axial cylinder, is set up by rope-like filaments. Biochemical analysis revealed that the (dominant) molecule of the lamellar coating is a 27-kDa protein which displays catalytic, proteolytic activity. High resolution electron microscopic analysis showed that this protein is arranged within the lamellae and stabilizes these surfaces by palisade-like pillars. The mechanical behavior of the spicules was analyzed by a 3-point bending assay, coupled with scanning electron microscopy. The load-extension curve of the spicule shows a biphasic breakage/cracking pattern. The outer lamellar zone cracks in several distinct steps showing high resistance in concert with comparably low elasticity, while the axial cylinder breaks with high elasticity and lower stiffness. The complex bioorganic/inorganic hybrid composition and structure of the Monorhaphis spicules might provide the blueprint for the synthesis of bio-inspired material, with unusual mechanical properties (strength, stiffness) without losing the exceptional properties of optical transmission. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The community structure and vertical distribution of prokaryotes in a deep-sea (ca. 3,191 m) cold sediment sample (ca. 43 cm long) collected at the East Pacific Rise (EPR) similar to 13 degrees N were studied with 16SrDNA-based molecular analyses. Total community DNA was extracted from each of four discrete layers EPRDS-1, -2, -3 and -4 (from top to bottom) and 16S rDNA were amplified by PCR. Cluster analysis of DGGE profiles revealed that the bacterial communities shifted sharply between EPRDS-1 and EPRDS-2 in similarity coefficient at merely 49%. Twenty-three sequences retrieved from DGGE bands fell into 11 groups based on BLAST and bootstrap analysis. The dominant groups in the bacterial communities were Chloroflexi, Gamma proteobacteria, Actinobacterium and unidentified bacteria, with their corresponding percentages varying along discrete layers. Pairwise Fst (F-statistics) values between the archaeal clone libraries indicated that the archaeal communities changed distinctly between EPRDS-2 and EPRDS-3. Sequences from the archaeal libraries were divided to eight groups. Crenarchaea Marine Group I (MGI) was prevalent in EPRDS-1 at 83%, while Uncultured Crenarchaea group II B (UCII B) abounded in EPRDS-4 at 61%. Our results revealed that the vertically stratified distribution of prokaryotic communities might be in response to the geochemical settings and suggested that the sampling area was influenced by hydrothermalism. The copresence of members related to hydrothermalism and cold deep-sea environments in the microbial community indicated that the area might be a transitional region from hydrothermal vents to cold deep-sea sediments.
Resumo:
Six deep-sea proteolytic bacteria taken from Aleutian margin sediments were screened; one of them produced a cold-adapted neutral halophilic protease. These bacteria belong to Pseudoalteromonas spp., which were identified by the 16S rDNA sequence. Of the six proteases produced, two were neutral cold-adapted proteases that showed their optimal activity at pH 7-8 and at temperature close to 35 degrees C, and the other four were alkaline proteases that showed their optimal activity at pH 9 and at temperature of 40-45 degrees C. The neutral cold-adapted protease E1 showed its optimal activity at a sodium chloride concentration of 2 M, whereas the activity of the other five proteases decreased at elevated sodium chloride concentrations. Protease E1 was purified to electrophoretic homogeneity and its molecular mass was 34 kDa, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of protease E1 was determined to be 32,411 Da by mass spectrometric analysis. Phenylmethyl sulfonylfluoride (PMSF) did not inhibit the activity of this protease, whereas it was partially inhibited by ethylenediaminetetra-acetic acid sodium salt (EDTA-Na). De novo amino acid sequencing proved protease E1 to be a novel protein.