54 resultados para Daylighting


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the implications of the introduction of electric lighting systems, building technologies, and theories of worker efficiency on the deep spatial and environmental transformations that occurred within the corporate workplace during the twentieth century. Examining the shift from daylighting strategies to largely artificially lit workplace environments, this paper argues that electric lighting significantly contributed to the architectural rationalization of both office work and the modern office environment. Contesting the historical and critical marginalization of lighting within the discourse of the modern built environment, this study calls for a reassessment of the role of artificial lighting in the development of the modern corporate workplace. Keywords: daylighting, fluorescent lighting, rationalization, workplace design

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A presente tese tem como principal objectivo abordar o tema da eficiência energética em edifícios, no que se refere aos sistemas de climatização. O desenvolvimento deste projecto realizou-se em torno dos consumos energéticos dos diferentes sistemas de climatização estudados (e por conseguinte da envolvente do edifício), focando o cumprimento dos requisitos térmico e energéticos das normas vigentes (RCCTE e RSECE) em Portugal, tendo como objectivo identificar os parâmetros com maior impacto e a relação tendencial entre as soluções construtivas e tecnológicas adoptadas, sempre com o horizonte de maximizar a eficiência energética e diminuir a dependência face à energia primária e consequentemente a emissão de gases que provocam o efeito de estufa. É âmbito desta tese comparar diferentes tipos de sistemas de climatização a nível energético e torná-los os mais eficientes possíveis, para que também se possam tornar monetariamente aliciantes e aumentar o rácio entre benefício/custo. Para tal, numa primeira fase foi feito um estudo térmico da envolvente do edifício, tendo sido utilizado um software de simulação energética de edifícios acreditado pela norma ASHRAE 140-2004 para se poder compreender como o edifício se comportava ao longo do ano, e introduzir algumas correcções na respectiva envolvente, para baixar as potências térmicas/eléctricas dos equipamentos do sistema de AVAC. De seguida foram estudados três sistemas possíveis de climatização para o edifício, de modo a identificar o mais eficiente numa base anual, bem como a possibilidade de combinar o uso de fontes de energia renováveis com o intuito de satisfazer ao máximo as necessidades térmicas do edifício e, ainda, de minimizar o consumo de energia de origem não renovável. Por fim, para avaliar as diferentes potencialidades de cada sistema de climatização estudado, fez-se o respectivo estudo à sua viabilidade económica. Nas considerações finais da presente tese é realizado um estudo aos benefícios que uma possível alteração da arquitectura do edifício pode trazer no aumento da iluminação natural do mesmo integrado com um controlo da iluminação artificial necessária para os diferentes espaços climatizados. Os resultados obtidos foram comparados entre si e corrigir a envolvente exterior reduz os consumos energéticos do edifício em cerca de 11%. As medidas correctivas propostas no sistema de climatização base originam uma redução energética igual a 43%. A nível ambiental, é possível a redução do número de emissões de CO2 em cerca de 72.1%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urban microclimates are greatly affected by urban form and texture and have a significant impact on building energy performance. The impact of urban form on energy consumption in buildings mainly relates to the availability of the uses of solar radiation, daylighting and natural ventilation. The urban heat island (UHI) effect increases the risk of overheating in buildings as well as the maximum energy demand for cooling. A need has arisen for a robust calculation tool (using the first-cut calculation method) to enable planners, architects and environmental assessors, to quickly and accurately compare the impact of different urban forms on local climate and UHI mitigation strategies. This paper describes a tool for the simulation of urban microclimates, which is developed by integrating image processing with a coupled thermal and airflow model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter covers the basic concepts of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass. In environments with high seasonal peak temperatures and/or humidity (e.g. cities in temperate regions experiencing the Urban Heat Island effect), wholly passive measures may need to be supplemented with low and zero carbon technologies (LZCs). The chapter also includes three case studies: one residential, one demonstrational and one academic facility (that includes an innovative passive downdraught cooling (PDC) strategy) to illustrate a selection of passive measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Daylighting systems can offer energy savings primarily by reducing electric lighting usage. Accurate predictive models of daylighting system performances are crucial for effective design and implementation of this renewable energy technology. A comparative study of predictive methods was performed and the use of a commercial raytracing software program was validated as a method of predicting light pipe performance. Raytracing simulation was shown to more accurately predict transmission effi ciency than existing analytical methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of ceiling geometries on the performance of lightshelves was investigated using physical model experiments and radiance simulations. Illuminance level and distribution uniformity were assessed for a working plane in a large space located in sub-tropical climate regions where innovative systems for daylighting and shading are required. It was found that the performance of the lightshelf can be improved by changing the ceiling geometry; the illuminance level increased in the rear of the room and decreased in the front near the window compared to rooms having conventional horizontal ceilings. Moreover, greater uniformity was achieved throughout the room as a result of reducing the difference in the illuminance level between the front and rear of the room. Radiance simulation results were found to be in good agreement with physical model data obtained under a clear sky and high solar radiation. The best ceiling shape was found to be one that is curved in the front and rear of the room.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermochromic windows are able to modulate their transmittance in both the visible and the near-infrared field as a function of their temperature. As a consequence, they allow to control the solar gains in summer, thus reducing the energy needs for space cooling. However, they may also yield a reduction in the daylight availability, which results in the energy consumption for indoor artificial lighting being increased. This paper investigates, by means of dynamic simulations, the application of thermochromic windows to an existing office building in terms of energy savings on an annual basis, while also focusing on the effects in terms of daylighting and thermal comfort. In particular, due attention is paid to daylight availability, described through illuminance maps and by the calculation of the daylight factor, which in several countries is subject thresholds. The study considers both a commercially available thermochromic pane and a series of theoretical thermochromic glazing. The expected performance is compared to static clear and reflective insulating glass units. The simulations are repeated in different climatic conditions, showing that the overall energy savings compared to clear glazing can range from around 5% for cold climates to around 20% in warm climates, while not compromising daylight availability. Moreover the role played by the transition temperature of the pane is examined, pointing out an optimal transition temperatures that is irrespective of the climatic conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This master thesis introduces assessment procedures of daylighting performance in office rooms with shaded opening, recommendations for Natal-RN (Latitude 05,47' S, Longitude 35,11' W). The studies assume the need of window exterior shading in hot and humid climate buildings. The daylighting performance analyses are based on simulated results for three levels of illuminance (300,500 e 1000 lux) between 08h00 e 16h00, in rooms with 2,80 m height, 6 m large and 4 m, 6 m e 8 m depths, with a centered single opening, window wall ratio (20%, 40% e 60%), four orientations (North, East, South and West), and two types of sky (clear and partially cloudy). The sky characteristics were statistically determined based on hourly data from INPE-CRN solar and daylighting weather station. The lighting performance is resulted from dynamic computer simulation of 72 models using Troplux 3.12. The simulation results were assessed using a new parameter to quantify the use of interior daylighting, the useful percentage of daylight (PULN), which corresponds to the time fraction with satisfactory light, in accordance with the illuminance design. The passive zone depths are defined based on the PULN. Despite the failures of illuminance data from the weather station, the analyses ratified the high potential of daylighting for shaded rooms. The most influential variables on the lighting performance are the opening size and the illuminance of design, while the orientation is a little influential

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The teaching/learning activities of the daylighting built environment require from the Architecture and Urbanism undergraduate student the ability to abstract the effects of daylight distributed in three-dimensional space that is being designed. Several tools and techniques can be used to facilitate the understanding of the involved phenomena, among which the computational simulation. This paper reports the digital inclusion of the daylighting teaching in the Architecture and Urbanism undergraduate course at the School of Architecture, Arts and Social Communication of Bauru (FAAC) of UNESP – Sao Paulo State University, that began in 2010. The inclusion process involved free software use, specifically the programs DIALux and SketchUp+Radiance, both with graphical output for the illuminated scenes visualization and for result analysis. The graphic model is converted from SketchUp to Radiance by a plugin and a user-friendly interface for Windows was developed to simulate the lighting. The process of digital inclusion is consolidated, with wide acceptance by students, for which computational simulation facilitates understanding of relation between daylight and built environment and helps the design process of elements for daylighting control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper evaluates the thermal and luminous performance of different louver configurations on an office room model located in Maceió-AL (Brazil), ranking the alternatives in a way that leads to choices for alternatives with potential balanced performance. Parametric analyses were done, based on computer simulations on software Troplux 5 and DesignBuilder 2. The variables examined were number of slats, slat slope and slat reflectance, considering the window facing North, South, East and West and a fixed shading mask for each orientation. Results refer to internal average illuminance and solar heat gains through windows. It was observed that configurations of shading devices with the same shading mask may have different luminous and thermal performance. The alternatives were ranked, so the information here produced has the potential to support decisions on designing shading devices in practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overall objective of this work is to provide diffuse illuminance availability at Madrid (Spain) through a statistical analysis of illuminance values corresponding to a long-term data series. The illuminance values are obtained from irradiance measurements by means of different empirical models for luminous efficacy. The values of diffuse illuminance on a horizontal and on vertical surfaces facing the four cardinal points are estimated and the different aspects related to daylight availability in an area with specific climatic conditions are analyzed. The experimental data consist of global and diffuse irradiance measurements on a horizontal surface provided by the National Meteorological Agency in Spain (AEMET) for Madrid. These data consist of hourly values measured in the period of 1980–2005. The statistical results derived correspond to a daylight typical year for the five surfaces considered. This information will be useful to building experts to estimate natural illumination availability when daylighting techniques are applied in building design with the main aim of electric energy savings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los arquitectos se han sentido progresivamente inclinados a incorporar superficies de vidrio cada vez mayores en sus proyectos de arquitectura, en correspondencia con una percepción socio-cultural del vidrio vinculada al progreso, la contemporaneidad y el bienestar, así como por la versatilidad de este material para expresar aspectos de la identidad del proyecto, establecer comunicación con el entorno y actuar como un escaparate para las tecnologías emergentes. A pesar de esta receptividad para acoger los sistemas tecnológicos más avanzados, la envolvente de vidrio contemporánea muy raramente integra tecnología avanzada para el control de la luz natural. Desde la arquitectura, el proyecto de la luz natural a través de la superficie de vidrio se ha explorado muy escasamente, aún cuando en las últimas tres décadas se haya producido una gran diversidad de soluciones tecnológicas para este propósito. Uno de los motivos principales para esta falta de sinergia es la inconsistencia conceptual que impulsa a los procesos proyectuales de la arquitectura y a los desarrollos tecnológicos para la sostenibilidad. Por un lado, las especificaciones de las tecnologías del control de la luz natural se determinan fundamentalmente desde una perspectiva científica de la eficiencia, que no tiene en consideración otros intereses y preocupaciones arquitectónicos. Por otro lado, la práctica arquitectónica no ha asimilado un pensamiento técnico en torno a la luz natural que lo determine como un agente clave del proceso proyectual, incluso cuando la sostenibilidad se perfile como la fuerza que ha de liderar la arquitectura del futuro y, en este sentido, sea una prioridad absoluta minimizar las consecuencias económicas y ecológicas del impacto negativo del vidrio. Por medio del escrutinio de valores culturales, proyectuales, funcionales y ecológicos, esta tesis aborda el estudio del precario diálogo transdisciplinar entre la evolución de la envolvente de vidrio en la arquitectura contemporánea y el desarrollo de soluciones tecnológicas para el proyecto de la luz natural, e identifica sus principales puntos de divergencia como los temas centrales desde los que proyectar con vidrio en una arquitectura sostenible futura. Desde una perspectiva energética, este ejercicio es un paso crítico para concienciar sobre la gravedad de la situación presente y establecer los cimientos para líneas de intervención esenciales para hacer a ambos mundos converger. Desde la óptica arquitectónica, este estudio representa además de una oportunidad para entender los potenciales proyectuales de estas tecnologías y reflexionar sobre la relación vidrio-luz, un escenario desde el que comprender el estatus incongruente de la sostenibilidad tecnológica en la arquitectura actual, contribuyendo a que se genere una contextualización recíproca entre la investigación en energía y la práctica de la arquitectura futura. ABSTRACT Architects are increasingly demanded to incorporate extensive glazed areas in buildings in correspondence with a socio-cultural perception of glass linked with progress, contemporaneity and welfare, as well as for this material’s versatility to express identity features, establish communication with its environment, and perform as a showroom for emergent technologies. Despite this disposition to take cutting-edge technology in, the contemporary glass envelope very scarcely integrates advanced daylight control technology. From an architectural standpoint, the exploration of the manipulation of natural light through the glass surface has been very swallow, even though a wide range of technical solutions has being produced in the last three decades for this purpose. One of the core issues behind this inconsistency is the lack of established synergy between architectural design processes and sustainable technological developments. From one side, the specifications of daylighting technologies are primarily determined by a scientific perspective of efficiency and disregard fundamental architectural concerns and interests. From another, architectural practice does not conceive sustainable technologies as key active agents in the design process, despite the fact the concept of sustainability is constantly regarded as the driving force of the leading-edge architecture of the future, and in this sense, it becomes an absolute priority to minimize the ecological and economical consequences of glass decisive impact in buildings. Through the scrutiny of cultural, functional and ecological values, this thesis analyses the precarious transdisciplinary dialogue between the evolution of the glass envelope in contemporary architecture and the development of daylighting technological solutions, and identifies the core affairs necessary to a sustainable integration of glass facades into future architecture. From an energy point of view, this exercise is a critical step to raise awareness about the severity of the present situation, and to establish the underpinnings for new lines of intervention essential to make both worlds efficiently converge. Architecturally speaking, in addition to the opportunity to understand the design potentials of these technologies and reflect on the relationship glasslight, this study contributes with a scenario from which generate the reciprocal contextualization of energy building research to future architectural practices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a methodology for the integral energy performance characterization (thermal, daylighting and electrical behavior) of semi-transparent photovoltaic modules (STPV) under real operation conditions is presented. An outdoor testing facility to analyze simultaneously thermal, luminous and electrical performance of the devices has been designed, constructed and validated. The system, composed of three independent measurement subsystems, has been operated in Madrid with four prototypes of a-Si STPV modules, each one corresponding to a specific degree of transparency. The extensive experimental campaign, continued for a whole year rotating the modules under test, has validated the reliability of the testing facility under varying environmental conditions. The thermal analyses show that both the solar protection and insulating properties of the laminated prototypes are lower than those achieved by a reference glazing whose characteristics are in accordance with the Spanish Technical Building Code. Daylighting analysis shows that STPV elements have an important lighting energy saving potential that could be exploited through their integration with strategies focused to reduce illuminance values in sunny conditions. Finally, the electrical tests show that the degree of transparency is not the most determining factor that affects the conversion efficiency.