811 resultados para Database, Image Retrieval, Browsing, Semantic Concept
Resumo:
The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. This capability is a product of the technological breakthroughs in the area of image processing that has allowed for the development of a large number of digital imaging applications in all industries. In this paper, an automated and content based construction site image retrieval method is presented. This method is based on image retrieval techniques, and specifically those related with material and object identification and matches known material samples with material clusters within the image content. The results demonstrate the suitability of this method for construction site image retrieval purposes and reveal the capability of existing image processing technologies to accurately identify a wealth of materials from construction site images.
Resumo:
The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. Examples include surface cracks detection, assessment of fire-damaged mortar, fatigue evaluation of asphalt mixes, aggregate shape measurements, velocimentry, vehicles detection, pore size distribution in geotextiles, damage detection and others. This capability is a product of the technological breakthroughs in the area of Image and Video Processing that has allowed for the development of a large number of digital imaging applications in all industries ranging from the well established medical diagnostic tools (magnetic resonance imaging, spectroscopy and nuclear medical imaging) to image searching mechanisms (image matching, content based image retrieval). Content based image retrieval techniques can also assist in the automated recognition of materials in construction site images and thus enable the development of reliable methods for image classification and retrieval. The amount of original imaging information produced yearly in the construction industry during the last decade has experienced a tremendous growth. Digital cameras and image databases are gradually replacing traditional photography while owners demand complete site photograph logs and engineers store thousands of images for each project to use in a number of construction management tasks. However, construction companies tend to store images without following any standardized indexing protocols, thus making the manual searching and retrieval a tedious and time-consuming effort. Alternatively, material and object identification techniques can be used for the development of automated, content based, construction site image retrieval methodology. These methods can utilize automatic material or object based indexing to remove the user from the time-consuming and tedious manual classification process. In this paper, a novel material identification methodology is presented. This method utilizes content based image retrieval concepts to match known material samples with material clusters within the image content. The results demonstrate the suitability of this methodology for construction site image retrieval purposes and reveal the capability of existing image processing technologies to accurately identify a wealth of materials from construction site images.
Resumo:
This paper proposes a region based image retrieval system using the local colour and texture features of image sub regions. The regions of interest (ROI) are roughly identified by segmenting the image into fixed partitions, finding the edge map and applying morphological dilation. The colour and texture features of the ROIs are computed from the histograms of the quantized HSV colour space and Gray Level co- occurrence matrix (GLCM) respectively. Each ROI of the query image is compared with same number of ROIs of the target image that are arranged in the descending order of white pixel density in the regions, using Euclidean distance measure for similarity computation. Preliminary experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods.
Resumo:
This paper proposes a content based image retrieval (CBIR) system using the local colour and texture features of selected image sub-blocks and global colour and shape features of the image. The image sub-blocks are roughly identified by segmenting the image into partitions of different configuration, finding the edge density in each partition using edge thresholding, morphological dilation. The colour and texture features of the identified regions are computed from the histograms of the quantized HSV colour space and Gray Level Co- occurrence Matrix (GLCM) respectively. A combined colour and texture feature vector is computed for each region. The shape features are computed from the Edge Histogram Descriptor (EHD). A modified Integrated Region Matching (IRM) algorithm is used for finding the minimum distance between the sub-blocks of the query and target image. Experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods
Resumo:
Magnetic Resonance Imaging play a vital role in the decision-diagnosis process of brain MR images. For an accurate diagnosis of brain related problems, the experts mostly compares both T1 and T2 weighted images as the information presented in these two images are complementary. In this paper, rotational and translational invariant form of Local binary Pattern (LBP) with additional gray scale information is used to retrieve similar slices of T1 weighted images from T2 weighted images or vice versa. The incorporation of additional gray scale information on LBP can extract more local texture information. The accuracy of retrieval can be improved by extracting moment features of LBP and reweighting the features based on users’ feedback. Here retrieval is done in a single subject scenario where similar images of a particular subject at a particular level are retrieved, and multiple subjects scenario where relevant images at a particular level across the subjects are retrieved
Resumo:
Techniques to retrieve reliable images from complicated objects are described, overcoming problems introduced by uneven surfaces, giving enhanced depth resolution and improving image contrast. The techniques are illustrated with application to THz imaging of concealed wall paintings.
Resumo:
Successful classification, information retrieval and image analysis tools are intimately related with the quality of the features employed in the process. Pixel intensities, color, texture and shape are, generally, the basis from which most of the features are Computed and used in such fields. This papers presents a novel shape-based feature extraction approach where an image is decomposed into multiple contours, and further characterized by Fourier descriptors. Unlike traditional approaches we make use of topological knowledge to generate well-defined closed contours, which are efficient signatures for image retrieval. The method has been evaluated in the CBIR context and image analysis. The results have shown that the multi-contour decomposition, as opposed to a single shape information, introduced a significant improvement in the discrimination power. (c) 2008 Elsevier B.V. All rights reserved,
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)