859 resultados para Data mining, Business intelligence, Previsioni di mercato


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Business intelligencellä tarkoitetaan liiketoimintatiedon hallintaan liittyviä prosesseja ja tekniikoita. Se pitää sisällään tiedon keräämiseen, tallentamiseen, analysointiin ja jakamiseen käytettyt tuotteet, tekniikat ja prosessit, joiden tavoitteena on auttaa yrityksen työntekijöitä liiketoimintaan liittyvässä päätöksenteossa. Tutkimuksen tavoitteena on tutkia uuden yritysryhmän laajuisen BI-tietojärjestelmän suunnitteluun ja käyttöönotoon liittyviä seikkoja ja luoda valmiudet BI-tietojärjestelmän kehitys- ja käyttöönottoprojektin kohdeyrityksessä, jonka toimiala on kansainvälinen terveydenhoitoalan tukkuliiketoiminta. Uuden BI-järjestelmän halutaan tukeva yritysryhmän yritysten välistä integraatiota ja tehostavan tiedonhakuun ja analysointiin liittyviä prosesseja. Tutkimus toteutettiin konstruktiivisena tutkimuksena, joka kattaa kohdeyrityksen IT-arkkitehtuurin, tietosisällön, prosessit ja organisaation raportoinnin kannalta. Lisäksi työssä suoritettiin ohjelmistovertailu kahden markkinoilla toimivan merkittävän ohjelmistotalon BI-tuotteiden välillä. Työssä havaittiin, että BI-projekti on laaja-alainen ja suuri hanke, joka ulottuu läpi koko organisaation. BI-ohjelmiston tehokas hyödyntäminen asettaa vaatimuksia erityisesti taustajärjestelmien tiedon huolelliseen mallintamiseen liittyen. Työssä saatiin pilotoinnin kautta käytännön kokemuksia uudesta järjestelmästä ja sen tarjoamista mahdollisuuksista kohdeyrityksessä.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent decades, business intelligence (BI) has gained momentum in real-world practice. At the same time, business intelligence has evolved as an important research subject of Information Systems (IS) within the decision support domain. Today’s growing competitive pressure in business has led to increased needs for real-time analytics, i.e., so called real-time BI or operational BI. This is especially true with respect to the electricity production, transmission, distribution, and retail business since the law of physics determines that electricity as a commodity is nearly impossible to be stored economically, and therefore demand-supply needs to be constantly in balance. The current power sector is subject to complex changes, innovation opportunities, and technical and regulatory constraints. These range from low carbon transition, renewable energy sources (RES) development, market design to new technologies (e.g., smart metering, smart grids, electric vehicles, etc.), and new independent power producers (e.g., commercial buildings or households with rooftop solar panel installments, a.k.a. Distributed Generation). Among them, the ongoing deployment of Advanced Metering Infrastructure (AMI) has profound impacts on the electricity retail market. From the view point of BI research, the AMI is enabling real-time or near real-time analytics in the electricity retail business. Following Design Science Research (DSR) paradigm in the IS field, this research presents four aspects of BI for efficient pricing in a competitive electricity retail market: (i) visual data-mining based descriptive analytics, namely electricity consumption profiling, for pricing decision-making support; (ii) real-time BI enterprise architecture for enhancing management’s capacity on real-time decision-making; (iii) prescriptive analytics through agent-based modeling for price-responsive demand simulation; (iv) visual data-mining application for electricity distribution benchmarking. Even though this study is from the perspective of the European electricity industry, particularly focused on Finland and Estonia, the BI approaches investigated can: (i) provide managerial implications to support the utility’s pricing decision-making; (ii) add empirical knowledge to the landscape of BI research; (iii) be transferred to a wide body of practice in the power sector and BI research community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Embora o objectivo de redução de acidentes laborais seja frequentemente invocado para justificar uma aplicação preventiva de testes de álcool e drogas no trabalho, há poucas evidências estatisticamente relevantes das pressupostas causalidade e correlação negativa entre a sujeição aos testes e os posteriores acidentes. Os dados de testes e dos acidentes ocorridos com os colaboradores de uma transportadora ferroviária portuguesa de âmbito nacional, durante anos recentes, começam agora a ser explorados, em busca de relações entre estas e outras variáveis biográficas. - Although the aim of reducing occupational accidents is frequently cited to justify preventive drug and alcohol testing at work, there is little statistically significant evidence of the assumed causality and negative correlation between exposure to testing and subsequent accidents. Data mining of tests and accidents involving employees of a Portuguese national wide railway transportation company, during recent years, is now beginning in search of relations between these and other biographical variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in hardware and software technology enable us to collect, store and distribute large quantities of data on a very large scale. Automatically discovering and extracting hidden knowledge in the form of patterns from these large data volumes is known as data mining. Data mining technology is not only a part of business intelligence, but is also used in many other application areas such as research, marketing and financial analytics. For example medical scientists can use patterns extracted from historic patient data in order to determine if a new patient is likely to respond positively to a particular treatment or not; marketing analysts can use extracted patterns from customer data for future advertisement campaigns; finance experts have an interest in patterns that forecast the development of certain stock market shares for investment recommendations. However, extracting knowledge in the form of patterns from massive data volumes imposes a number of computational challenges in terms of processing time, memory, bandwidth and power consumption. These challenges have led to the development of parallel and distributed data analysis approaches and the utilisation of Grid and Cloud computing. This chapter gives an overview of parallel and distributed computing approaches and how they can be used to scale up data mining to large datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cada vez mais o tempo acaba sendo o diferencial de uma empresa para outra. As empresas, para serem bem sucedidas, precisam da informação certa, no momento certo e para as pessoas certas. Os dados outrora considerados importantes para a sobrevivência das empresas hoje precisam estar em formato de informações para serem utilizados. Essa é a função das ferramentas de “Business Intelligence”, cuja finalidade é modelar os dados para obter informações, de forma que diferencie as ações das empresas e essas consigam ser mais promissoras que as demais. “Business Intelligence” é um processo de coleta, análise e distribuição de dados para melhorar a decisão de negócios, que leva a informação a um número bem maior de usuários dentro da corporação. Existem vários tipos de ferramentas que se propõe a essa finalidade. Esse trabalho tem como objetivo comparar ferramentas através do estudo das técnicas de modelagem dimensional, fundamentais nos projetos de estruturas informacionais, suporte a “Data Warehouses”, “Data Marts”, “Data Mining” e outros, bem como o mercado, suas vantagens e desvantagens e a arquitetura tecnológica utilizada por estes produtos. Assim sendo, foram selecionados os conjuntos de ferramentas de “Business Intelligence” das empresas Microsoft Corporation e Oracle Corporation, visto as suas magnitudes no mundo da informática.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relazione tecnica e funzionale, con rimandi teorici disciplinari, riguardo la realizzazione di un sistema informatico su piattaforma Microsoft per l'organizzazione e la fruizione delle informazioni di Ciclo attivo in un'azienda di servizi di grandi dimensioni.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il primo capitolo prevede un’introduzione sul modello relazionale e sulle difficoltà che possono nascere nel tentativo di conformare le esigenze attuali di applicazioni ed utenti ai vincoli da esso imposti per lasciare poi spazio ad un’ampia descrizione del movimento NoSQL e delle tecnologie che ne fanno parte; il secondo capitolo sarà invece dedicato a MongoDB, alla presentazione delle sue caratteristiche e peculiarità, cercando di fornirne un quadro apprezzabile ed approfondito seppure non completo e del tutto esaustivo; infine nel terzo ed ultimo capitolo verrà approfondito il tema della ricerca di testo in MongoDB e verranno presentati e discussi i risultati ottenuti dai nostri test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente elaborato ha come oggetto la progettazione e lo sviluppo di una soluzione Hadoop per il Calcolo di Big Data Analytics. Nell'ambito del progetto di monitoraggio dei bottle cooler, le necessità emerse dall'elaborazione di dati in continua crescita, ha richiesto lo sviluppo di una soluzione in grado di sostituire le tradizionali tecniche di ETL, non pi�ù su�fficienti per l'elaborazione di Big Data. L'obiettivo del presente elaborato consiste nel valutare e confrontare le perfomance di elaborazione ottenute, da un lato, dal flusso di ETL tradizionale, e dall'altro dalla soluzione Hadoop implementata sulla base del framework MapReduce.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coniato negli anni‘90 il termine indica lo scavare tra i dati con chiara metafora del gold mining, ossia la ricerca dell’oro. Oggi è sinonimo di ricerca di informazione in vasti database, ed enfatizza il processo di analisi all’interno dei dati in alternativa all’uso di specifici metodi di analisi. Il data mining è una serie di metodi e tecniche usate per esplorare e analizzare grandi set di dati, in modo da trovare alcune regole sconosciute o nascoste, associazioni o tendenze.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente elaborato ha come oggetto la progettazione e lo sviluppo di una soluzione Elasticsearch come piattaforma di analisi in un contesto di Social Business Intelligence. L’elaborato si inserisce all’interno di un progetto del Business Intelligence Group dell’Università di Bologna, incentrato sul monitoraggio delle discussioni online sul tema politico nel periodo delle elezioni europee del 2014.