902 resultados para Data analysis system
Resumo:
Cuttings return analysis is an important tool to detect and prevent problems during the petroleum well drilling process. Several measurements and tools have been developed for drilling problems detection, including mud logging, PWD and downhole torque information. Cuttings flow meters were developed in the past to provide information regarding cuttings return at the shale shakers. Their use, however, significantly impact the operation including rig space issues, interferences in geological analysis besides, additional personel required. This article proposes a non intrusive system to analyze the cuttings concentration at the shale shakers, which can indicate problems during drilling process, such as landslide, the collapse of the well borehole walls. Cuttings images are acquired by a high definition camera installed above the shakers and sent to a computer coupled with a data analysis system which aims the quantification and closure of a cuttings material balance in the well surface system domain. No additional people at the rigsite are required to operate the system. Modern Artificial intelligence techniques are used for pattern recognition and data analysis. Techniques include the Optimum-Path Forest (OPF), Artificial Neural Network using Multilayer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC). Field test results conducted on offshore floating vessels are presented. Results show the robustness of the proposed system, which can be also integrated with other data to improve the efficiency of drilling problems detection. Copyright 2010, IADC/SPE Drilling Conference and Exhibition.
Resumo:
Data visualization techniques are powerful in the handling and analysis of multivariate systems. One such technique known as parallel coordinates was used to support the diagnosis of an event, detected by a neural network-based monitoring system, in a boiler at a Brazilian Kraft pulp mill. Its attractiveness is the possibility of the visualization of several variables simultaneously. The diagnostic procedure was carried out step-by-step going through exploratory, explanatory, confirmatory, and communicative goals. This tool allowed the visualization of the boiler dynamics in an easier way, compared to commonly used univariate trend plots. In addition it facilitated analysis of other aspects, namely relationships among process variables, distinct modes of operation and discrepant data. The whole analysis revealed firstly that the period involving the detected event was associated with a transition between two distinct normal modes of operation, and secondly the presence of unusual changes in process variables at this time.
Resumo:
Complexity in time series is an intriguing feature of living dynamical systems, with potential use for identification of system state. Although various methods have been proposed for measuring physiologic complexity, uncorrelated time series are often assigned high values of complexity, errouneously classifying them as a complex physiological signals. Here, we propose and discuss a method for complex system analysis based on generalized statistical formalism and surrogate time series. Sample entropy (SampEn) was rewritten inspired in Tsallis generalized entropy, as function of q parameter (qSampEn). qSDiff curves were calculated, which consist of differences between original and surrogate series qSampEn. We evaluated qSDiff for 125 real heart rate variability (HRV) dynamics, divided into groups of 70 healthy, 44 congestive heart failure (CHF), and 11 atrial fibrillation (AF) subjects, and for simulated series of stochastic and chaotic process. The evaluations showed that, for nonperiodic signals, qSDiff curves have a maximum point (qSDiff(max)) for q not equal 1. Values of q where the maximum point occurs and where qSDiff is zero were also evaluated. Only qSDiff(max) values were capable of distinguish HRV groups (p-values 5.10 x 10(-3); 1.11 x 10(-7), and 5.50 x 10(-7) for healthy vs. CHF, healthy vs. AF, and CHF vs. AF, respectively), consistently with the concept of physiologic complexity, and suggests a potential use for chaotic system analysis. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4758815]
Resumo:
Introduction. Despite the ban of lead-containing gasoline and paint, childhood lead poisoning remains a public health issue. Furthermore, a Medicaid-eligible child is 8 times more likely to have an elevated blood lead level (EBLL) than a non-Medicaid child, which is the primary reason for the early detection lead screening mandate for ages 12 and 24 months among the Medicaid population. Based on field observations, there was evidence that suggested a screening compliance issue. Objective. The purpose of this study was to analyze blood lead screening compliance in previously lead poisoned Medicaid children and test for an association between timely lead screening and timely childhood immunizations. The mean months between follow-up tests were also examined for a significant difference between the non-compliant and compliant lead screened children. Methods. Access to the surveillance data of all childhood lead poisoned cases in Bexar County was granted by the San Antonio Metropolitan Health District. A database was constructed and analyzed using descriptive statistics, logistic regression methods and non-parametric tests. Lead screening at 12 months of age was analyzed separately from lead screening at 24 months. The small portion of the population who were also related were included in one analysis and removed from a second analysis to check for significance. Gender, ethnicity, age of home, and having a sibling with an EBLL were ruled out as confounders for the association tests but ethnicity and age of home were adjusted in the nonparametric tests. Results. There was a strong significant association between lead screening compliance at 12 months and childhood immunization compliance, with or without including related children (p<0.00). However, there was no significant association between the two variables at the age of 24 months. Furthermore, there was no significant difference between the median of the mean months of follow-up blood tests among the non-compliant and compliant lead screened population for at the 12 month screening group but there was a significant difference at the 24 month screening group (p<0.01). Discussion. Descriptive statistics showed that 61% and 56% of the previously lead poisoned Medicaid population did not receive their 12 and 24 month mandated lead screening on time, respectively. This suggests that their elevated blood lead level may have been diagnosed earlier in their childhood. Furthermore, a child who is compliant with their lead screening at 12 months of age is 2.36 times more likely to also receive their childhood immunizations on time compared to a child who was not compliant with their 12 month screening. Even though there was no statistical significant association found for the 24 month group, the public health significance of a screening compliance issue is no less important. The Texas Medicaid program needs to enforce lead screening compliance because it is evident that there has been no monitoring system in place. Further recommendations include a need for an increased focus on parental education and the importance of taking their children for wellness exams on time.^
Resumo:
Autoimmune diseases are a group of inflammatory conditions in which the body's immune system attacks its own cells. There are over 80 diseases classified as autoimmune disorders, affecting up to 23.5 million Americans. Obesity affects 32.3% of the US adult population, and could also be considered an inflammatory condition, as indicated by the presence of chronic low-grade inflammation. C-reactive protein (CRP) is a marker of inflammation, and is associated with both adiposity and autoimmune inflammation. This study sought to determine the cross-sectional association between obesity and autoimmune diseases in a large, nationally representative population derived from NHANES 2009–10 data, and the role CRP might play in this relationship. Overall, the results determined that individuals with autoimmune disease were 2.11 times more likely to report being overweight than individuals without autoimmune disease and that CRP had a mediating affect on the obesity-autoimmune relationship. ^
Resumo:
A basic requirement of the data acquisition systems used in long pulse fusion experiments is the real time physical events detection in signals. Developing such applications is usually a complex task, so it is necessary to develop a set of hardware and software tools that simplify their implementation. This type of applications can be implemented in ITER using fast controllers. ITER is standardizing the architectures to be used for fast controller implementation. Until now the standards chosen are PXIe architectures (based on PCIe) for the hardware and EPICS middleware for the software. This work presents the methodology for implementing data acquisition and pre-processing using FPGA-based DAQ cards and how to integrate these in fast controllers using EPICS.
Resumo:
Complex systems in causal relationships are known to be circular rather than linear; this means that a particular result is not produced by a single cause, but rather that both positive and negative feedback processes are involved. However, although interpreting systemic interrelationships requires a language formed by circles, this has only been developed at the diagram level, and not from an axiomatic point of view. The first difficulty encountered when analysing any complex system is that usually the only data available relate to the various variables, so the first objective was to transform these data into cause-and-effect relationships. Once this initial step was taken, our discrete chaos theory could be applied by finding the causal circles that will form part of the system attractor and allow their behavior to be interpreted. As an application of the technique presented, we analyzed the system associated with the transcription factors of inflammatory diseases.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
National Highway Traffic Safety Administration, Office of Driver and Pedestrian Research, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
Exploratory analysis of data seeks to find common patterns to gain insights into the structure and distribution of the data. In geochemistry it is a valuable means to gain insights into the complicated processes making up a petroleum system. Typically linear visualisation methods like principal components analysis, linked plots, or brushing are used. These methods can not directly be employed when dealing with missing data and they struggle to capture global non-linear structures in the data, however they can do so locally. This thesis discusses a complementary approach based on a non-linear probabilistic model. The generative topographic mapping (GTM) enables the visualisation of the effects of very many variables on a single plot, which is able to incorporate more structure than a two dimensional principal components plot. The model can deal with uncertainty, missing data and allows for the exploration of the non-linear structure in the data. In this thesis a novel approach to initialise the GTM with arbitrary projections is developed. This makes it possible to combine GTM with algorithms like Isomap and fit complex non-linear structure like the Swiss-roll. Another novel extension is the incorporation of prior knowledge about the structure of the covariance matrix. This extension greatly enhances the modelling capabilities of the algorithm resulting in better fit to the data and better imputation capabilities for missing data. Additionally an extensive benchmark study of the missing data imputation capabilities of GTM is performed. Further a novel approach, based on missing data, will be introduced to benchmark the fit of probabilistic visualisation algorithms on unlabelled data. Finally the work is complemented by evaluating the algorithms on real-life datasets from geochemical projects.
Resumo:
A substantial amount of information on the Internet is present in the form of text. The value of this semi-structured and unstructured data has been widely acknowledged, with consequent scientific and commercial exploitation. The ever-increasing data production, however, pushes data analytic platforms to their limit. This thesis proposes techniques for more efficient textual big data analysis suitable for the Hadoop analytic platform. This research explores the direct processing of compressed textual data. The focus is on developing novel compression methods with a number of desirable properties to support text-based big data analysis in distributed environments. The novel contributions of this work include the following. Firstly, a Content-aware Partial Compression (CaPC) scheme is developed. CaPC makes a distinction between informational and functional content in which only the informational content is compressed. Thus, the compressed data is made transparent to existing software libraries which often rely on functional content to work. Secondly, a context-free bit-oriented compression scheme (Approximated Huffman Compression) based on the Huffman algorithm is developed. This uses a hybrid data structure that allows pattern searching in compressed data in linear time. Thirdly, several modern compression schemes have been extended so that the compressed data can be safely split with respect to logical data records in distributed file systems. Furthermore, an innovative two layer compression architecture is used, in which each compression layer is appropriate for the corresponding stage of data processing. Peripheral libraries are developed that seamlessly link the proposed compression schemes to existing analytic platforms and computational frameworks, and also make the use of the compressed data transparent to developers. The compression schemes have been evaluated for a number of standard MapReduce analysis tasks using a collection of real-world datasets. In comparison with existing solutions, they have shown substantial improvement in performance and significant reduction in system resource requirements.