945 resultados para Data Structure and Algorithms
Resumo:
A purified commercial double-walled carbon nanotube (DWCNT) sample was investigated by transmission electron microscopy (TEM), thermogravimetry (TG), and Raman spectroscopy. Moreover, the heat capacity of the DWCNT sample was determined by temperature-modulated differential scanning calorimetry in the range of temperature between -50 and 290 °C. The main thermo-oxidation characterized by TG occurred at 474 °C with the loss of 90 wt% of the sample. Thermo-oxidation of the sample was also investigated by high-resolution TG, which indicated that a fraction rich in carbon nanotube represents more than 80 wt% of the material. Other carbonaceous fractions rich in amorphous coating and graphitic particles were identified by the deconvolution procedure applied to the derivative of TG curve. Complementary structural data were provided by TEM and Raman studies. The information obtained allows the optimization of composites based on this nanomaterial with reliable characteristics.
Resumo:
XML document clustering is essential for many document handling applications such as information storage, retrieval, integration and transformation. An XML clustering algorithm should process both the structural and the content information of XML documents in order to improve the accuracy and meaning of the clustering solution. However, the inclusion of both kinds of information in the clustering process results in a huge overhead for the underlying clustering algorithm because of the high dimensionality of the data. This paper introduces a novel approach that first determines the structural similarity in the form of frequent subtrees and then uses these frequent subtrees to represent the constrained content of the XML documents in order to determine the content similarity. The proposed method reduces the high dimensionality of input data by using only the structure-constrained content. The empirical analysis reveals that the proposed method can effectively cluster even very large XML datasets and outperform other existing methods.
Resumo:
This thesis deals with the problem of the instantaneous frequency (IF) estimation of sinusoidal signals. This topic plays significant role in signal processing and communications. Depending on the type of the signal, two major approaches are considered. For IF estimation of single-tone or digitally-modulated sinusoidal signals (like frequency shift keying signals) the approach of digital phase-locked loops (DPLLs) is considered, and this is Part-I of this thesis. For FM signals the approach of time-frequency analysis is considered, and this is Part-II of the thesis. In part-I we have utilized sinusoidal DPLLs with non-uniform sampling scheme as this type is widely used in communication systems. The digital tanlock loop (DTL) has introduced significant advantages over other existing DPLLs. In the last 10 years many efforts have been made to improve DTL performance. However, this loop and all of its modifications utilizes Hilbert transformer (HT) to produce a signal-independent 90-degree phase-shifted version of the input signal. Hilbert transformer can be realized approximately using a finite impulse response (FIR) digital filter. This realization introduces further complexity in the loop in addition to approximations and frequency limitations on the input signal. We have tried to avoid practical difficulties associated with the conventional tanlock scheme while keeping its advantages. A time-delay is utilized in the tanlock scheme of DTL to produce a signal-dependent phase shift. This gave rise to the time-delay digital tanlock loop (TDTL). Fixed point theorems are used to analyze the behavior of the new loop. As such TDTL combines the two major approaches in DPLLs: the non-linear approach of sinusoidal DPLL based on fixed point analysis, and the linear tanlock approach based on the arctan phase detection. TDTL preserves the main advantages of the DTL despite its reduced structure. An application of TDTL in FSK demodulation is also considered. This idea of replacing HT by a time-delay may be of interest in other signal processing systems. Hence we have analyzed and compared the behaviors of the HT and the time-delay in the presence of additive Gaussian noise. Based on the above analysis, the behavior of the first and second-order TDTLs has been analyzed in additive Gaussian noise. Since DPLLs need time for locking, they are normally not efficient in tracking the continuously changing frequencies of non-stationary signals, i.e. signals with time-varying spectra. Nonstationary signals are of importance in synthetic and real life applications. An example is the frequency-modulated (FM) signals widely used in communication systems. Part-II of this thesis is dedicated for the IF estimation of non-stationary signals. For such signals the classical spectral techniques break down, due to the time-varying nature of their spectra, and more advanced techniques should be utilized. For the purpose of instantaneous frequency estimation of non-stationary signals there are two major approaches: parametric and non-parametric. We chose the non-parametric approach which is based on time-frequency analysis. This approach is computationally less expensive and more effective in dealing with multicomponent signals, which are the main aim of this part of the thesis. A time-frequency distribution (TFD) of a signal is a two-dimensional transformation of the signal to the time-frequency domain. Multicomponent signals can be identified by multiple energy peaks in the time-frequency domain. Many real life and synthetic signals are of multicomponent nature and there is little in the literature concerning IF estimation of such signals. This is why we have concentrated on multicomponent signals in Part-H. An adaptive algorithm for IF estimation using the quadratic time-frequency distributions has been analyzed. A class of time-frequency distributions that are more suitable for this purpose has been proposed. The kernels of this class are time-only or one-dimensional, rather than the time-lag (two-dimensional) kernels. Hence this class has been named as the T -class. If the parameters of these TFDs are properly chosen, they are more efficient than the existing fixed-kernel TFDs in terms of resolution (energy concentration around the IF) and artifacts reduction. The T-distributions has been used in the IF adaptive algorithm and proved to be efficient in tracking rapidly changing frequencies. They also enables direct amplitude estimation for the components of a multicomponent
Resumo:
This paper demonstrates the application of a robust form of pose estimation and scene reconstruction using data from camera images. We demonstrate results that suggest the ability of the algorithm to rival methods of RANSAC based pose estimation polished by bundle adjustment in terms of solution robustness, speed and accuracy, even when given poor initialisations. Our simulated results show the behaviour of the algorithm in a number of novel simulated scenarios reflective of real world cases that show the ability of the algorithm to handle large observation noise and difficult reconstruction scenes. These results have a number of implications for the vision and robotics community, and show that the application of visual motion estimation on robotic platforms in an online fashion is approaching real-world feasibility.
Resumo:
Boundaries are an important field of study because they mediate almost every aspect of organizational life. They are becoming increasingly more important as organizations change more frequently and yet, despite the endemic use of the boundary metaphor in common organizational parlance, they are poorly understood. Organizational boundaries are under-theorized and researchers in related fields often simply assume their existence, without defining them. The literature on organizational boundaries is fragmented with no unifying theoretical basis. As a result, when it is recognized that an organizational boundary is "dysfunctional". there is little recourse to models on which to base remediating action. This research sets out to develop just such a theoretical model and is guided by the general question: "What is the nature of organizational boundaries?" It is argued that organizational boundaries can be conceptualised through elements of both social structure and of social process. Elements of structure include objects, coupling, properties and identity. Social processes include objectification, identification, interaction and emergence. All of these elements are integrated by a core category, or basic social process, called boundary weaving. An organizational boundary is a complex system of objects and emergent properties that are woven together by people as they interact together, objectifying the world around them, identifying with these objects and creating couplings of varying strength and polarity as well as their own fragmented identity. Organizational boundaries are characterised by the multiplicity of interconnections, a particular domain of objects, varying levels of embodiment and patterns of interaction. The theory developed in this research emerged from an exploratory, qualitative research design employing grounded theory methodology. The field data was collected from the training headquarters of the New Zealand Army using semi-structured interviews and follow up observations. The unit of analysis is an organizational boundary. Only one research context was used because of the richness and multiplicity of organizational boundaries that were present. The model arose, grounded in the data collected, through a process of theoretical memoing and constant comparative analysis. Academic literature was used as a source of data to aid theory development and the saturation of some central categories. The final theory is classified as middle range, being substantive rather than formal, and is generalizable across medium to large organizations in low-context societies. The main limitation of the research arose from the breadth of the research with multiple lines of inquiry spanning several academic disciplines, with some relevant areas such as the role of identity and complexity being addressed at a necessarily high level. The organizational boundary theory developed by this research replaces the typology approaches, typical of previous theory on organizational boundaries and reconceptualises the nature of groups in organizations as well as the role of "boundary spanners". It also has implications for any theory that relies on the concept of boundaries, such as general systems theory. The main contribution of this research is the development of a holistic model of organizational boundaries including an explanation of the multiplicity of boundaries . no organization has a single definable boundary. A significant aspect of this contribution is the integration of aspects of complexity theory and identity theory to explain the emergence of higher-order properties of organizational boundaries and of organizational identity. The core category of "boundary weaving". is a powerful new metaphor that significantly reconceptualises the way organizational boundaries may be understood in organizations. It invokes secondary metaphors such as the weaving of an organization's "boundary fabric". and provides managers with other metaphorical perspectives, such as the management of boundary friction, boundary tension, boundary permeability and boundary stability. Opportunities for future research reside in formalising and testing the theory as well as developing analytical tools that would enable managers in organizations to apply the theory in practice.
Resumo:
With the growing number of XML documents on theWeb it becomes essential to effectively organise these XML documents in order to retrieve useful information from them. A possible solution is to apply clustering on the XML documents to discover knowledge that promotes effective data management, information retrieval and query processing. However, many issues arise in discovering knowledge from these types of semi-structured documents due to their heterogeneity and structural irregularity. Most of the existing research on clustering techniques focuses only on one feature of the XML documents, this being either their structure or their content due to scalability and complexity problems. The knowledge gained in the form of clusters based on the structure or the content is not suitable for reallife datasets. It therefore becomes essential to include both the structure and content of XML documents in order to improve the accuracy and meaning of the clustering solution. However, the inclusion of both these kinds of information in the clustering process results in a huge overhead for the underlying clustering algorithm because of the high dimensionality of the data. The overall objective of this thesis is to address these issues by: (1) proposing methods to utilise frequent pattern mining techniques to reduce the dimension; (2) developing models to effectively combine the structure and content of XML documents; and (3) utilising the proposed models in clustering. This research first determines the structural similarity in the form of frequent subtrees and then uses these frequent subtrees to represent the constrained content of the XML documents in order to determine the content similarity. A clustering framework with two types of models, implicit and explicit, is developed. The implicit model uses a Vector Space Model (VSM) to combine the structure and the content information. The explicit model uses a higher order model, namely a 3- order Tensor Space Model (TSM), to explicitly combine the structure and the content information. This thesis also proposes a novel incremental technique to decompose largesized tensor models to utilise the decomposed solution for clustering the XML documents. The proposed framework and its components were extensively evaluated on several real-life datasets exhibiting extreme characteristics to understand the usefulness of the proposed framework in real-life situations. Additionally, this research evaluates the outcome of the clustering process on the collection selection problem in the information retrieval on the Wikipedia dataset. The experimental results demonstrate that the proposed frequent pattern mining and clustering methods outperform the related state-of-the-art approaches. In particular, the proposed framework of utilising frequent structures for constraining the content shows an improvement in accuracy over content-only and structure-only clustering results. The scalability evaluation experiments conducted on large scaled datasets clearly show the strengths of the proposed methods over state-of-the-art methods. In particular, this thesis work contributes to effectively combining the structure and the content of XML documents for clustering, in order to improve the accuracy of the clustering solution. In addition, it also contributes by addressing the research gaps in frequent pattern mining to generate efficient and concise frequent subtrees with various node relationships that could be used in clustering.
Resumo:
Objective Factors associated with the development of hallux valgus (HV) are multifactorial and remain unclear. The objective of this systematic review and meta-analysis was to investigate characteristics of foot structure and footwear associated with HV. Design Electronic databases (Medline, Embase, and CINAHL) were searched to December 2010. Cross-sectional studies with a valid definition of HV and a non-HV comparison group were included. Two independent investigators quality rated all included papers. Effect sizes and 95% confidence intervals (CIs) were calculated (standardized mean differences (SMDs) for continuous data and risk ratios (RRs) for dichotomous data). Where studies were homogeneous, pooling of SMDs was conducted using random effects models. Results A total of 37 papers (34 unique studies) were quality rated. After exclusion of studies without reported measurement reliability for associated factors, data were extracted and analysed from 16 studies reporting results for 45 different factors. Significant factors included: greater first intermetatarsal angle (pooled SMD = 1.5, CI: 0.88–2.1), longer first metatarsal (pooled SMD = 1.0, CI: 0.48–1.6), round first metatarsal head (RR: 3.1–5.4), and lateral sesamoid displacement (RR: 5.1–5.5). Results for clinical factors (e.g., first ray mobility, pes planus, footwear) were less conclusive regarding their association with HV. Conclusions Although conclusions regarding causality cannot be made from cross-sectional studies, this systematic review highlights important factors to monitor in HV assessment and management. Further studies with rigorous methodology are warranted to investigate clinical factors associated with HV.
Resumo:
Traffic congestion has a significant impact on the economy and environment. Encouraging the use of multimodal transport (public transport, bicycle, park’n’ride, etc.) has been identified by traffic operators as a good strategy to tackle congestion issues and its detrimental environmental impacts. A multi-modal and multi-objective trip planner provides users with various multi-modal options optimised on objectives that they prefer (cheapest, fastest, safest, etc) and has a potential to reduce congestion on both a temporal and spatial scale. The computation of multi-modal and multi-objective trips is a complicated mathematical problem, as it must integrate and utilize a diverse range of large data sets, including both road network information and public transport schedules, as well as optimising for a number of competing objectives, where fully optimising for one objective, such as travel time, can adversely affect other objectives, such as cost. The relationship between these objectives can also be quite subjective, as their priorities will vary from user to user. This paper will first outline the various data requirements and formats that are needed for the multi-modal multi-objective trip planner to operate, including static information about the physical infrastructure within Brisbane as well as real-time and historical data to predict traffic flow on the road network and the status of public transport. It will then present information on the graph data structures representing the road and public transport networks within Brisbane that are used in the trip planner to calculate optimal routes. This will allow for an investigation into the various shortest path algorithms that have been researched over the last few decades, and provide a foundation for the construction of the Multi-modal Multi-objective Trip Planner by the development of innovative new algorithms that can operate the large diverse data sets and competing objectives.
Resumo:
This chapter describes decentralized data fusion algorithms for a team of multiple autonomous platforms. Decentralized data fusion (DDF) provides a useful basis with which to build upon for cooperative information gathering tasks for robotic teams operating in outdoor environments. Through the DDF algorithms, each platform can maintain a consistent global solution from which decisions may then be made. Comparisons will be made between the implementation of DDF using two probabilistic representations. The first, Gaussian estimates and the second Gaussian mixtures are compared using a common data set. The overall system design is detailed, providing insight into the overall complexity of implementing a robust DDF system for use in information gathering tasks in outdoor UAV applications.
Resumo:
This research project investigated the influence of family transitions on children's adjustment and school achievement across the primary school years, in single-parent, re-partnered and two-parent families. The quality of children's relationships with parents, teachers and peers were predictive of more positive outcomes, regardless of family structure. The research analysed data from the Kindergarten Cohort participating in Growing Up in Australia: The Longitudinal Study of Australian Children. Across the age span of the children studied, cumulative effects of any residential or school changes, or decreased family income, associated with family transitions, were more likely to predict poorer child outcomes in behaviour adjustment and school achievement.
Resumo:
Coral reefs provide an increasingly important archive of palaeoclimate data that can be used to constrain climate model simulations. Reconstructing past environmental conditions may also provide insights into the potential of reef systems to survive changes in the Earth’s climate. Reef-based palaeoclimate reconstructions are predominately derived from colonies of massive Porites, with the most abundant genus in the Indo-Pacific—Acropora—receiving little attention owing to their branching growth trajectories, high extension rates and secondary skeletal thickening. However, inter-branch skeleton (consisting of both coenosteum and corallites) near the bases of corymbose Acropora colonies holds significant potential as a climate archive. This region of Acropora skeleton is atypical, having simple growth trajectories with parallel corallites, approximately horizontal density banding, low apparent extension rates and a simple microstructure with limited secondary thickening. Hence, inter-branch skeleton in Acropora bears more similarities to the coralla of massive corals, such as Porites, than to traditional Acropora branches. Cyclic patterns of Sr/Ca ratios in this structure suggest that the observed density banding is annual in nature, thus opening up the potential to use abundant corymbose Acropora for palaeoclimate reconstruction.
Resumo:
A major virulence factor for Yersinia pseudotuberculosis is lipopolysaccharide, including O-polysaccharide (OPS). Currently, the OPS based serotyping scheme for Y. pseudotuberculosis includes 21 known O-serotypes, with genetic and structural data available for 17 of them. The completion of the OPS structures and genetics of this species will enable the visualization of relationships between O-serotypes and allow for analysis of the evolutionary processes within the species that give rise to new serotypes. Here we present the OPS structure and gene cluster of serotype O:12, thus adding one more to the set of completed serotypes, and show that this serotype is present in both Y. pseudotuberculosis and the newly identified Y. similis species. The O:12 structure is shown to include two rare sugars: 4-C[(R)-1-hydroxyethyl]-3,6-dideoxy-d-xylo-hexose (d-yersiniose) and 6-deoxy-l-glucopyranose (l-quinovose). We have identified a novel putative guanine diphosphate (GDP)-l-fucose 4-epimerase gene and propose a pathway for the synthesis of GDP-l-quinovose, which extends the known GDP-l-fucose pathway.
Resumo:
This thesis provides new knowledge on an understudied group of grasses, some of which are resurrection grasses (i.e. able to withstand extreme drought). The sole Australian species (Tripogon loliiformis) is morphologically diverse and could be more than one species. This study sought to determine how many species of Tripogon occur in Australia, their relationships to other species in the genus and to two other genera of resurrection grasses (Eragrostiella and Oropetium). Results of the research indicate there is not enough evidence, from DNA sequence data, to warrant splitting up T. loliiformis into multiple species. The extensive morphological diversity seems to be influenced by environmental conditions. The three genera are so closely related that they could be grouped into a single genus. This new knowledge opens up pathways for future investigations, including studying genes responsible for desiccation tolerance and the conservation of native grasses that occur in rocky habitats.
Resumo:
Interleukin-10 (IL-10) is an important immunoregulatory cytokine produced by various types of cells. Researchers describe here the isolation and characterization of olive flounder IL-10 (ofIL-10) cDNA and genomic organization. The ofIL-10 gene encodes a 187 amino acid protein and is composed of a five exon/four intron structure, similar to other known IL-10 genes. The ofIL-10 promoter sequence analysis shows a high level of homology in putative binding sites for transcription factors which are sufficient for transcriptional regulation ofIL-10. Important structural residues are maintained in the ofIL-10 protein including the four cysteines responsible for the two intra-chain disulfide bridges reported for human IL-10 and two extra cysteine residues that exist only in fish species. The phylogenetic analysis clustered ofIL-10 with other fish IL-10s and apart from mammalian IL-10 molecules. Quantitative real-time Polymerase Chain Reaction (PCR) analysis demonstrated ubiquitous ofIL-10 gene expression in the 13 tissues examined. Additionally, the induction of ofIL-10 gene expression was observed in the kidney tissue from olive flounder infected with bacteria (Edawardsiella tarda) or virus (Viral Hemorrhagic Septicemia Virus; VHSV). These data indicate that IL-10 is an important immune regulator that is conserved strictly genomic organization and function during the evolution of vertebrate immunity.
Resumo:
We have examined the magnetotransport properties and the structure, by Rietveld refinement of powder X-ray data, of the phases RE(1.2)Sr(1.8)Mn(2)O(7) (RE = La, Pr, Nd). We find that on cooling, La1.2Sr1.8Mn2O7 undergoes a transition to a nearly perfect ferromagnet with 90% magnetization at 1.45 T, as reported by earlier workers, but the Pr and Nd phases show only a small magnetization that grows gradually as the temperature is decreased. There seems to be significant correlation between electrical transport and the Jahn-Teller elongation of the apical Mn-O bonds in these systems. The elongation of the apical Mn-O bonds forces the nine-coordinate rock-salt site to be occupied preferentially by the smaller rare-earth-metal cations. This preferential occupation is reliably obtained from the X-ray refinement. All three title phases show a magnetoresistance ratio of about 4(corresponding to a magnetoresistance, [R(0)-R(H)]/R(0), of about 75%) at a field of 7 T and temperatures around 100 K.