889 resultados para Daniela Seggiaro
Resumo:
We consider multi-robot systems that include sensor nodes and aerial or ground robots networked together. We describe two cooperative algorithms that allow robots and sensors to enhance each other's performance. In the first algorithm, an aerial robot assists the localization of the sensors. In the second algorithm, a localized sensor network controls the navigation of an aerial robot. We present physical experiments with an flying robot and a large Mica Mote sensor network.
Resumo:
This paper introduces the application of a sensor network to navigate a flying robot. We have developed distributed algorithms and efficient geographic routing techniques to incrementally guide one or more robots to points of interest based on sensor gradient fields, or along paths defined in terms of Cartesian coordinates. The robot itself is an integral part of the localization process which establishes the positions of sensors which are not known a priori. We use this system in a large-scale outdoor experiment with Mote sensors to guide an autonomous helicopter along a path encoded in the network. A simple handheld device, using this same environmental infrastructure, is used to guide humans.
Resumo:
The behaviour of cells cultured within three-dimensional (3D) structures rather than onto two-dimensional (2D) culture plastic more closely reflects their in vivo responses. Consequently, 3D culture systems are becoming crucial scientific tools in cancer cell research. We used a novel 3D culture concept to assess cell-matrix interactions implicated in carcinogenesis: a synthetic hydrogel matrix equipped with key biomimetic features, namely incorporated cell integrin-binding motifs (e.g. RGD peptides) and the ability of being degraded by cell-secreted proteases (e.g. matrix metalloproteases). As a cell model, we chose epithelial ovarian cancer, an aggressive disease typically diagnosed at an advanced stage when chemoresistance occurs. Both cell lines used (OV-MZ-6, SKOV-3) proliferated similarly in 2D, but not in 3D. Spheroid formation was observed exclusively in 3D when cells were embedded within hydrogels. By exploiting the design flexibility of the hydrogel characteristics, we showed that proliferation in 3D was dependent on cell-integrin engagement and the ability of cells to proteolytically remodel their extracellular microenvironment. Higher survival rates after exposure to the anti-cancer drug paclitaxel were observed in cell spheroids grown in hydrogels (40-60%) compared to cell monolayers in 2D (20%). Thus, 2D evaluation of chemosensitivity may not reflect pathophysiological events seen in patients. Because of the design flexibility of their characteristics and their stability in long-term cultures (28 days), these biomimetic hydrogels represent alternative culture systems for the increasing demand in cancer research for more versatile, physiologically relevant and reproducible 3D matrices.
Resumo:
Background For CAM to feature prominently in health care decision-making there is a need to expand the evidence-base and to further incorporate economic evaluation into research priorities. In a world of scarce health care resources and an emphasis on efficiency and clinical efficacy, CAM, as indeed do all other treatments, requires rigorous evaluation to be considered in budget decision-making. Methods Economic evaluation provides the tools to measure the costs and health consequences of CAM interventions and thereby inform decision making. This article offers CAM researchers an introductory framework for understanding, undertaking and disseminating economic evaluation. The types of economic evaluation available for the study of CAM are discussed, and decision modelling is introduced as a method for economic evaluation with much potential for use in CAM. Two types of decision models are introduced, decision trees and Markov models, along with a worked example of how each method is used to examine costs and health consequences. This is followed by a discussion of how this information is used by decision makers. Conclusions Undoubtedly, economic evaluation methods form an important part of health care decision making. Without formal training it can seem a daunting task to consider economic evaluation, however, multidisciplinary teams provide an opportunity for health economists, CAM practitioners and other interested researchers, to work together to further develop the economic evaluation of CAM.
Resumo:
The burden of rising health care expenditures has created a demand for information regarding the clinical and economic outcomes associated with complementary and alternative medicines. Meta-analyses of randomized controlled trials have found Hypericum perforatum preparations to be superior to placebo and similarly effective as standard antidepressants in the acute treatment of mild to moderate depression. A clear advantage over antidepressants has been demonstrated in terms of the reduced frequency of adverse effects and lower treatment withdrawal rates, low rates of side effects and good compliance, key variables affecting the cost-effectiveness of a given form of therapy. The most important risk associated with use is potential interactions with other drugs, but this may be mitigated by using extracts with low hyperforin content. As the indirect costs of depression are greater than five times direct treatment costs, given the rising cost of pharmaceutical antidepressants, the comparatively low cost of Hypericum perforatum extract makes it worthy of consideration in the economic evaluation of mild to moderate depression treatments.
Resumo:
Ocean processes are dynamic and complex events that occur on multiple different spatial and temporal scales. To obtain a synoptic view of such events, ocean scientists focus on the collection of long-term time series data sets. Generally, these time series measurements are continually provided in real or near-real time by fixed sensors, e.g., buoys and moorings. In recent years, an increase in the utilization of mobile sensor platforms, e.g., Autonomous Underwater Vehicles, has been seen to enable dynamic acquisition of time series data sets. However, these mobile assets are not utilized to their full capabilities, generally only performing repeated transects or user-defined patrolling loops. Here, we provide an extension to repeated patrolling of a designated area. Our algorithms provide the ability to adapt a standard mission to increase information gain in areas of greater scientific interest. By implementing a velocity control optimization along the predefined path, we are able to increase or decrease spatiotemporal sampling resolution to satisfy the sampling requirements necessary to properly resolve an oceanic phenomenon. We present a path planning algorithm that defines a sampling path, which is optimized for repeatability. This is followed by the derivation of a velocity controller that defines how the vehicle traverses the given path. The application of these tools is motivated by an ongoing research effort to understand the oceanic region off the coast of Los Angeles, California. The computed paths are implemented with the computed velocities onto autonomous vehicles for data collection during sea trials. Results from this data collection are presented and compared for analysis of the proposed technique.
Resumo:
Ocean processes are dynamic, complex, and occur on multiple spatial and temporal scales. To obtain a synoptic view of such processes, ocean scientists collect data over long time periods. Historically, measurements were continually provided by fixed sensors, e.g., moorings, or gathered from ships. Recently, an increase in the utilization of autonomous underwater vehicles has enabled a more dynamic data acquisition approach. However, we still do not utilize the full capabilities of these vehicles. Here we present algorithms that produce persistent monitoring missions for underwater vehicles by balancing path following accuracy and sampling resolution for a given region of interest, which addresses a pressing need among ocean scientists to efficiently and effectively collect high-value data. More specifically, this paper proposes a path planning algorithm and a speed control algorithm for underwater gliders, which together give informative trajectories for the glider to persistently monitor a patch of ocean. We optimize a cost function that blends two competing factors: maximize the information value along the path, while minimizing deviation from the planned path due to ocean currents. Speed is controlled along the planned path by adjusting the pitch angle of the underwater glider, so that higher resolution samples are collected in areas of higher information value. The resulting paths are closed circuits that can be repeatedly traversed to collect long-term ocean data in dynamic environments. The algorithms were tested during sea trials on an underwater glider operating off the coast of southern California, as well as in Monterey Bay, California. The experimental results show significant improvements in data resolution and path reliability compared to previously executed sampling paths used in the respective regions.
Resumo:
In this paper, we describe the development of an independent and on-board visual servoing system which allows a computationally impoverished aerial vehicle to autonomously identify and track a moving surface target. Our image segmentation and target identification algorithms were developed with the specific task of monitoring whales at sea but could be adapted for other targets. Observing whales is important for many marine biology tasks and is currently performed manually from the shore or from boats. We also present hardware experiments which demonstrate the capabilities of our algorithms for object identification and tracking that enable a flying vehicle to track a moving target.