971 resultados para Damage Evaluation
Resumo:
The design of efficient hydrological risk mitigation strategies and their subsequent implementation relies on a careful vulnerability analysis of the elements exposed. Recently, extensive research efforts were undertaken to develop and refine empirical relationships linking the structural vulnerability of buildings to the impact forces of the hazard processes. These empirical vulnerability functions allow estimating the expected direct losses as a result of the hazard scenario based on spatially explicit representation of the process patterns and the elements at risk classified into defined typological categories. However, due to the underlying empiricism of such vulnerability functions, the physics of the damage-generating mechanisms for a well-defined element at risk with its peculiar geometry and structural characteristics remain unveiled, and, as such, the applicability of the empirical approach for planning hazard-proof residential buildings is limited. Therefore, we propose a conceptual assessment scheme to close this gap. This assessment scheme encompasses distinct analytical steps: modelling (a) the process intensity, (b) the impact on the element at risk exposed and (c) the physical response of the building envelope. Furthermore, these results provide the input data for the subsequent damage evaluation and economic damage valuation. This dynamic assessment supports all relevant planning activities with respect to a minimisation of losses, and can be implemented in the operational risk assessment procedure.
Resumo:
Grapholita molesta (Busck) es una plaga que tiene como principal hospedero el duraznero donde produce daños en brotes y frutos. El estudio de características físicoquímicas, en dichos órganos vegetales (pH, sólidos solubles, acidez y contenido de vitamina C) puede brindar información sobre los hábitos alimentarios de dicha plaga. Los objetivos del trabajo fueron: 1) Determinar características físico-químicas como pH, sólidos solubles, acidez y vitamina C en brotes y frutos de duraznero (cvs. Bowen y Fortuna) durante el período vegetativo y 2) Establecer la influencia de las características investigadas en relación con los daños producidos por la especie, en el mismo monte frutal, hasta la cosecha de los frutos. El máximo daño, en brotes y en frutos, se observó hacia el final de la evaluación, previo a la cosecha. Teniendo en cuenta las determinaciones analíticas de brotes y frutos y la evaluación de sus daños, la plaga puede alcanzar un desarrollo óptimo cuando el pH está comprendido entre 3.76 y 5.93, el contenido de sólidos solubles entre 6 y 12 %, la acidez oscila entre 0.17 a 0.39 g%g de ácido cítrico y el contenido de vitamina C está comprendido entre 7.05 y 61.9 mg%g.
Resumo:
In the present work a seismic retrofitting technique is proposed for masonry infilled reinforced concrete frames based on the replacement of infill panels by K-bracing with vertical shear link. The performance of this technique is evaluated through experimental tests. A simplified numerical model for structural damage evaluation is also formulated according to the notions and principles of continuum damage mechanics. The proposed model is calibrated with the experimental results. The experimental results have shown an excellent energy dissipation capacity with the proposed technique. Likewise, the numerical predictions with the proposed model are in good agreement with experimental results.
Resumo:
Traumatic brain injury and spinal cord injury have recently been put under the spotlight as major causes of death and disability in the developed world. Despite the important ongoing experimental and modeling campaigns aimed at understanding the mechanics of tissue and cell damage typically observed in such events, the differenti- ated roles of strain, stress and their corresponding loading rates on the damage level itself remain unclear. More specif- ically, the direct relations between brain and spinal cord tis- sue or cell damage, and electrophysiological functions are still to be unraveled. Whereas mechanical modeling efforts are focusing mainly on stress distribution and mechanistic- based damage criteria, simulated function-based damage cri- teria are still missing. Here, we propose a new multiscale model of myelinated axon associating electrophysiological impairment to structural damage as a function of strain and strain rate. This multiscale approach provides a new framework for damage evaluation directly relating neuron mechanics and electrophysiological properties, thus provid- ing a link between mechanical trauma and subsequent func- tional deficits.
Resumo:
Traumatic brain injury and spinal cord injury have recently been put under the spotlight as major causes of death and disability in the developed world. Despite the important ongoing experimental and modeling campaigns aimed at understanding the mechanics of tissue and cell damage typically observed in such events, the differentiated roles of strain, stress and their corresponding loading rates on the damage level itself remain unclear. More specifically, the direct relations between brain and spinal cord tissue or cell damage, and electrophysiological functions are still to be unraveled. Whereas mechanical modeling efforts are focusing mainly on stress distribution and mechanistic-based damage criteria, simulated function-based damage criteria are still missing. Here, we propose a new multiscale model of myelinated axon associating electrophysiological impairment to structural damage as a function of strain and strain rate. This multiscale approach provides a new framework for damage evaluation directly relating neuron mechanics and electrophysiological properties, thus providing a link between mechanical trauma and subsequent functional deficits
Resumo:
Vibration Based Damage Identification Techniques which use modal data or their functions, have received significant research interest in recent years due to their ability to detect damage in structures and hence contribute towards the safety of the structures. In this context, Strain Energy Based Damage Indices (SEDIs), based on modal strain energy, have been successful in localising damage in structuers made of homogeneous materials such as steel. However, their application to reinforced concrete (RC) structures needs further investigation due to the significant difference in the prominent damage type, the flexural crack. The work reported in this paper is an integral part of a comprehensive research program to develop and apply effective strain energy based damage indices to assess damage in reinforced concrete flexural members. This research program established (i) a suitable flexural crack simulation technique, (ii) four improved SEDI's and (iii) programmable sequentional steps to minimise effects of noise. This paper evaluates and ranks the four newly developed SEDIs and existing seven SEDIs for their ability to detect and localise flexural cracks in RC beams. Based on the results of the evaluations, it recommends the SEDIs for use with single and multiple vibration modes.
Resumo:
Purpose: To develop, using dacarbazine as a model, reliable techniques for measuring DNA damage and repair as pharmacodynamic endpoints for patients receiving chemotherapy. Methods: A group of 39 patients with malignant melanoma were treated with dacarbazine 1 g/m2 i.v. every 21 days. Tamoxifen 20 mg daily was commenced 24 h after the first infusion and continued until 3 weeks after the last cycle of chemotherapy. DNA strand breaks formed during dacarbazine-induced DNA damage and repair were measured in individual cells by the alkaline comet assay. DNA methyl adducts were quantified by measuring urinary 3-methyladenine (3-MeA) excretion using immunoaffinity ELISA. Venous blood was taken on cycles 1 and 2 for separation of peripheral blood lymphocytes (PBLs) for measurement of DNA strand breaks. Results: Wide interpatient variation in PBL DNA strand breaks occurred following chemotherapy, with a peak at 4 h (median 26.6 h, interquartile range 14.75- 40.5 h) and incomplete repair by 24 h. Similarly, there was a range of 3-MeA excretion with peak levels 4-10 h after chemotherapy (median 33 nmol/h, interquartile range 20.448.65 nmol/h). Peak 3-MeA excretion was positively correlated with DNA strand breaks at 4 h (Spearman's correlation coefficient, r = 0.39, P = 0.036) and 24 h (r = 0.46, P = 0.01). Drug-induced emesis correlated with PBL DNA strand breaks (Mann Whitney U-test, P = 0.03) but not with peak 3-MeA excretion. Conclusions: DNA damage and repair following cytotoxic chemotherapy can be measured in vivo by the alkaline comet assay and by urinary 3-MeA excretion in patients receiving chemotherapy.
Resumo:
In Queensland, Australia, strawberries (Fragaria xananassa Duchesne) are grown in open fields and rainfall events can damage fruit. Cultivars that are resistant to rain damage may reduce losses and lower risk for the growers. However, little is known about the genetic control of resistance and in a subtropical climate, unpredictable rainfall events hamper evaluation. Rain damage was evaluated on seedling and clonal trials of one breeding population comprising 645 seedling genotypes and 94 clones and on a second clonal population comprising 46 clones from an earlier crossing to make preliminary estimates of heritability. The incidence of field damage from rainfall and damage after laboratory soaking was evaluated to determine if this soaking method could be used to evaluate resistance to rain damage. Narrow-sense heritability of resistance to rain damage calculated for seedlings was low (0.21 +/- 0.15) and not significantly different from zero; however, broad-sense heritability estimates were moderate in both seedlings (0.49 +/- 0.16) and clones (0.45 +/- 0.08) from the first population and similar in clones (0.56 +/- 0.21) from the second population. Immersion of fruit in deionized water produced symptoms consistent with rain damage in the field. Lengthening the duration of soaking of 'Festival' fruit in deionized water exponentially increased the proportion of damage to fruit ranging in ripeness from immature to ripe during the first 6-h period of soaking. When eight genotypes were evaluated, the proportion of sound fruit after soaking in deionized water in the laboratory for up to 5 h was linearly related (r(2) = 0.90) to the proportion of sound fruit in the field after 89 mm of rain. The proportion of sound fruit of the breeding genotype '2008-208' and 'Festival' under soaking (0.67, 0.60) and field (0.52, 0.43) evaluations, respectively, is about the same and these genotypes may be useful sources of resistance to rain damage.
Resumo:
Study of fatigue phenomenon in composites requires a dynamic tool which can detect and identify different failure mechanisms involved. The tool should also be capable of monitoring the cumulative damage progression on-line. Acoustic Emission Technique has been utilized in the experimental investigations on unidirectional carbon fiber reinforced plastic (CFRP) composite specimens subjected to tension-tension fatigue. Amplitude as well as frequency distribution of Acoustic Emission (AE) signals have been studied to detect and characterize different failure mechanisms. For a quantitative measure of degradation of the material with fatigue load cycles, reduction in stiffness of the specimen has been measured intermittently. Ultrasonic imaging could give the information on the changes in the interior status of the material at different stages of fatigue life.
Resumo:
Tn the current set of investigations foam sandwich panels and some components of an aircraft comprising of two layer Glass Fiber Reinforced Plastic(GFRP) face sheets of thickness 1mm each with polyurethene foam as filler of thickness 8mm were examined for detection of debonds and defects. Known defects were introduced in the panels in the form of teflon insert, full foam removal,half foam removal and edge delamination by inserting a teflon and removing it after curing. Two such panels were subjected to acoustic impact and analysis was carried out in both time and frequency domains. These panels were ultrasonically scanned to obtain C-SCAN images as reference to evaluate Acoustic Impact Test (AIT) results. In addition both Fokker bond testing and AIT(woodpecker) were carried out on the same panels and also some critical joints on the actual component. The results obtained from these tests are presented and discussed in this paper.
Resumo:
Advanced composite structural components made up of Carbon Fibre Reinforced Polymers (CFRP) used in aerospace structures such as in Fuselage, Leading & Trailing edges of wing and tail, Flaps, Elevator, Rudder and entire wing structures encounter most critical type of damage induced by low velocity impact (<10 m/s) loads. Tool dropped during maintenance & service,and hailstone impacts on runways are common and unavoidable low-velocity impacts. These lowvelocity impacts induce defects such as delaminations, matrix cracking and debonding in the layered material, which are sub-surface in nature and are barely visible on the surface known as Barely Visible Impact Damage (BVID). These damages may grow under service load, leading to catastrophic failure of the structure. Hence detection, evaluation and characterization of these types of damage is of major concern in aerospace industries as the life of the component depends on the size and shape of the damage.In this paper, details of experimental investigations carried out and results obtained from a low-velocity impact of 30 Joules corresponding to the hailstone impact on the wing surface,simulated on the 6 mm CFRP laminates using instrumented drop-weight impact testing machine are presented. The Ultrasound C-scan and Infrared thermography imaging techniques were utilized extensively to detect, evaluate and characterize impact damage across the thickness of the laminates.
Resumo:
Acoustic emission (AE) testing is a well-known method for damage identification of various concrete structures including bridges. This article presents a method to assess damage in reinforced concrete (RC) bridge beams subjected to incremental cyclic loading. The specifications in the standard NDIS-2421 were used to classify the damage in RC bridge beams. Earlier researchers classified the damage occurring in bridge beams by using crack mouth opening displacement (CMOD) and AE released and proposed a standard (NDIS-2421: the Japanese Society for NonDestructive Inspection). In general, multiple cracks take place in RC beams under bending; therefore, utilisation of CMOD for crack detection may not be appropriate. In the present study, the damage in RC beams is classified by using the AE released, deflection, strains in steel and concrete, because the measurement of the strains in steel and concrete is easy and the codes of practice are specified for different limit states (IS-456:2000). The observations made in the present experimental study have some important practical applications in assessing the state of damage of concrete structural members.
Resumo:
The mechanical behaviour of composite materials differs from that of conventional structural materials owing to their heterogeneous and anisotropic nature. Different types of defects and anomalies get induced in these materials during the fabrication process. Further, during their service life, the components made of composite materials develop different types of damage. The performance and life of such components is governed by the combined effect of all these defects and damage. While porosity, voids, inclusions etc., are some defects those can get induced during the fabrication of composites, matrix cracks, interface debonds, delaminations and fiber breakage are major types of service induced damage which are of concern. During the service life of components made of composites, one type of damage can grow and initiate another type of damage. For example, matrix cracks can gradually grow to the interface and initiate debonds. Interface debonds in a particular plane can lead to delaminations. Consequently, the combined effect of different types of distributed damage causes the failure of the component. A set of non-destructive evaluation (NDE) methods is well established for testing conventional metallic materials. Some of them can also be utilized for composite materials as they are, and in some cases with a little different approach or modification. Ultrasonics, Radiography, Thermography, Fiber Optics, Acoustic Emision Techniques etc., to name a few. Detection, evaluation and characterization of different types of defects and damage encountered in composite materials and structures using different NDE tools is discussed briefly in this paper.
Resumo:
Three possible contact conditions may prevail at a contact interface depending on the magnitude of normal and tangential loads, that is, stick condition, partial slip condition or gross sliding condition. Numerical techniques have been used to evaluate the stress field under partial slip and gross sliding condition. Cattaneo and Mindlin approach has been adapted to model partial slip condition. Shear strain energy density and normalized strain energy release rate have been evaluated at the surface and in the subsurface region. It is apparent from the present study that the shear strain energy density gives a fair prediction for the nucleation of damage, whereas the propagation of the crack is controlled by normalized strain energy release rate. Further, it has been observed that the intensity of damage strongly depends on coefficient of friction and contact conditions prevailing at the contact interface. (C) 2014 Elsevier B.V. All rights reserved.