964 resultados para DUFFY-BLOOD-GROUP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Histo-blood group antigens (HBGAs) have been associated with susceptibility to enteric pathogens including noroviruses (NoVs), enterotoxigenic Escherichia coli (ETEC), Campylobacter jejuni, and Vibrio cholerae. We performed a retrospective cohort study to evaluate the relationship between traveler HBGA phenotypes and susceptibility to travelers' diarrhea (TD) and post-infectious complications. 364 travelers to Guadalajara, Mexico were followed prospectively from June 1 - September 30, 2007 and from June 7–July 28, 2008 for the development of TD and at 6 months for post-infectious irritable bowel syndrome (PIIBS). Noroviruses were detected from illness stool specimens with RT-PCR. Diarrheal stool samples were also assayed for enterotoxigenic and enteroaggregative E. coli, Salmonella species, Shigella species, Vibrio species, Campylobacter jejuni, Yersinia enterocolitica, Aeromonas species, and Plesiomonas species. Diarrheal stools were evaluated for inflammation with fecal leukocytes, mucus, and occult blood. Phenotyping for ABO and Lewis antigens with an ELISA assay and FUT2 gene PCR genotyping for secretor status were performed with saliva. 171 of 364 (47%) subjects developed TD. HBGA typing for the travelers revealed O (62.9%), A (34.6%), B (1.6%), and AB (0.8%) phenotypes. There were 7% nonsecretors and 93% secretors among the travelers. AB phenotypes were more commonly associated with Cryptosporidium species (P=0.04) and ETEC ( P=0.08) as causes of TD. AB and B phenotype individuals were more likely to experience inflammatory diarrhea, particularly mucoid diarrhea ( P=0.02). However, there were relatively few individuals with AB and B phenotypes. GI and GII NoV and Cryptosporidium species infections and PI-IBS were identified only in secretors, but these differences were not statistically significant, (P=1.00), (P=1.00), and (P=0.60), respectively. Additional studies are needed to evaluate whether AB phenotype individuals may be more susceptible to developing TD associated with Cryptosporidium species or ETEC, and whether AB and B phenotype individuals may be more likely to develop inflammatory TD. Further studies are needed to investigate whether nonsecretor travelers may be at less risk for developing infections with NoVs and Cryptosporidium species and PI-IBS.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infection with Helicobacter pylori is associated with different human gastric diseases. Biochemical studies, in vitro adherence assays, and in vivo animal models revealed that epithelial attachment of H. pylori can be mediated by the blood-group antigen-binding adhesin (BabA) targeting human Lewisb surface epitopes. Studies with transgenic mice expressing the Lewisb epitope have shown that such attachment can alter disease outcome. In the current study, the presence of the babA2 gene encoding the adhesin was investigated in clinical isolates from a German population by using PCR and reverse transcription–PCR. A positive genotype was correlated to allelic variations in the genes encoding VacA and CagA and also to the prevalence of duodenal ulcer, distal gastric adenocarcinoma, mucosa-associated lymphoid tissue lymphoma, and antral gastritis. The presence of babA2 was significantly associated with duodenal ulcer (P = 0.0002) and adenocarcinoma (P = 0.033). In contrast, type 1 strains (vacAs1- and cagA-positive) were associated with only duodenal ulcer (P = 0.004) but not adenocarcinoma (P = 0.235). Genotype presence of babA2, vacAs1, and cagA (“triple-positive” strains) showed a highly significant correlation to the prevalence of ulcer (P = 0.000002) and adenocarcinoma (P = 0.014) and discriminated significantly better between disease outcome than did the current type 1 classification. These results indicate that the babA2 gene is of high clinical relevance and would be a useful marker to identify patients who are at higher risk for specific H. pylori-related diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phenotypic cloning approach was used to isolate a canine cDNA encoding Forssman glycolipid synthetase (FS; UDP-GalNAc:globoside alpha-1,3-N-acetylgalactosaminyltransferase; EC 2.4.1.88). The deduced amino acid sequence of FS demonstrates extensive identity to three previously cloned glycosyltransferases, including the enzymes responsible for synthesis of histo-blood group A and B antigens. These three enzymes, like FS, catalyze the addition of either N-acetylgalactosamine (GalNAc) or galactose (Gal) in alpha-1,3-linkage to their respective substrates. Despite the high degree of sequence similarity among the transferases, we demonstrate that the FS cDNA encodes an enzyme capable of synthesizing Forssman glycolipid, and demonstrates no GalNAc or Gal transferase activity when closely related substrates are examined. Thus, the FS cDNA is a novel member of the histo-blood group ABO gene family that encodes glycosyltransferases with related but distinct substrate specificity. Cloning of the FS cDNA will allow a detailed dissection of the roles Forssman glycolipid plays in cellular differentiation, development, and malignant transformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycoproteins expressing the Lutheran blood group antigens were isolated from human erythrocyte membranes and from human fetal liver. Amino acid sequence analyses allowed the design of redundant oligonucleotides that were used to generate a 459-bp, sequence-specific probe by PCR. A cDNA clone of 2400 bp was isolated from a human placental lambda gt 11 library and sequenced, and the deduced amino acid sequence was studied. The predicted mature protein is a type I membrane protein of 597 amino acids with five potential N-glycosylation sites. There are five disulfide-bonded, extracellular, immunoglobulin superfamily domains (two variable-region set and three constant-region set), a single hydrophobic, membrane-spanning domain, and a cytoplasmic domain of 59 residues. The overall structure is similar to that of the human tumor marker MUC 18 and the chicken neural adhesion molecule SC1. The extracellular domains and cytoplasmic domain contain consensus motifs for the binding of integrin and Src homology 3 domains, respectively, suggesting possible receptor and signal-transduction function. Immunostaining of human tissues demonstrated a wide distribution and provided evidence that the glycoprotein is under developmental control in liver and may also be regulated during differentiation in other tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primary sensory neurons in the vertebrate olfactory systems are characterised by the differential expression of distinct cell surface carbohydrates. We show here that the histo-blood group H carbohydrate is expressed by primary sensory neurons in both the main and accessory olfactory systems while the blood group A carbohydrate is expressed by a subset of vomeronasal neurons in the developing accessory olfactory system. We have used both loss-of-function and gain-of-function approaches to manipulate expression of these carbohydrates in the olfactory system. In null mutant mice lacking the alpha(1,2)fucosyltransferase FUT1, the absence of blood group H carbohydrate resulted in the delayed maturation of the glomerular layer of the main olfactory bulb. In addition, ubiquitous expression of blood group A on olfactory axons in gain-of-function transgenic mice caused mis-routing of axons in the glomerular layer of the main olfactory bulb and led to exuberant growth of vomeronasal axons in the accessory olfactory bulb. These results provide in vivo evidence for a role of specific cell surface carbohydrates during development of the olfactory nerve pathways. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ABO and Rhesus blood group systems are very important clinical tools that are commonly used in blood transfusion and their associations with various disease conditions have been widely reported. This study investigated the distribution of these blood group systems and assessed the association of malaria infection with the ABO blood groups among children in Federal Capital Territory, Abuja. Blood specimens from deep finger pricks of 730 children aged between 0-2 years were examined for malaria parasites using Field stains method. ABO and Rhesus blood group antigens tests were also performed using standard tile protocols. Of all the children admitted into the study, 445 were sick while 285 were apparently healthy. The prevalence of malaria parasites was significantly higher (P = 0.00047) among the sick children (69.8%) than the apparently healthy children (30.2%). The most prevalent blood group was O (55.7%) and the Rhesus D antigen was positive for 98.4% of all the children. The prevalence of blood group B among the sick children was significantly lower (P = 0.00373) than the other blood group types. There is no association between malaria infection and ABO blood groups but the prevalence of higher malaria parasite density was significantly greater (P = 0.0404) in children with blood group A (7.7%). In conclusion, blood group O was the most prevalent blood group in the study and children with blood group A appeared to be more susceptible to higher level of malaria parasitemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Plasmodium vivax circumsporozoite variants have been identified in several geographical areas. The real implication of the genetic variation in this region of the P. vivax genome has been questioned for a long time. Although previous studies have observed significant association between VK210 and the Duffy blood group, we present here that evidences of this variation are limited to the CSP central portion. Methods: The phylogenetic analyses were accomplished starting from the amplification of conserved domains of 18 SSU RNAr and Cyt B. The antibodies responses against the CSP peptides, MSP-1, AMA-1 and DBP were detected by ELISA, in plasma samples of individuals infected with two P. vivax CS genotypes: VK210 and P. vivax-like. Results: These analyses of the two markers demonstrate high similarity among the P. vivax CS genotypes and surprisingly showed diversity equal to zero between VK210 and P. vivax-like, positioning these CS genotypes in the same clade. A high frequency IgG antibody against the N- and C-terminal regions of the P. vivax CSP was found as compared to the immune response to the R- and V-repetitive regions (p = 0.0005, Fisher's Exact test). This difference was more pronounced when the P. vivax-like variant was present in the infection (p = 0.003, Fisher's Exact test). A high frequency of antibody response against MSP-1 and AMA-1 peptides was observed for all P. vivax CS genotypes in comparison to the same frequency for DBP. Conclusions: This results target that the differences among the P. vivax CS variants are restrict to the central repeated region of the protein, mostly nucleotide variation with important serological consequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Plasmodium vivax circumsporozoite variants have been identified in several geographical areas. The real implication of the genetic variation in this region of the P. vivax genome has been questioned for a long time. Although previous studies have observed significant association between VK210 and the Duffy blood group, we present here that evidences of this variation are limited to the CSP central portion.Methods: The phylogenetic analyses were accomplished starting from the amplification of conserved domains of 18 SSU RNAr and Cyt B. The antibodies responses against the CSP peptides, MSP-1, AMA-1 and DBP were detected by ELISA, in plasma samples of individuals infected with two P. vivax CS genotypes: VK210 and P. vivax-like.Results: These analyses of the two markers demonstrate high similarity among the P. vivax CS genotypes and surprisingly showed diversity equal to zero between VK210 and P. vivax-like, positioning these CS genotypes in the same clade. A high frequency IgG antibody against the N- and C-terminal regions of the P. vivax CSP was found as compared to the immune response to the R- and V-repetitive regions (p = 0.0005, Fisher's Exact test). This difference was more pronounced when the P. vivax-like variant was present in the infection (p = 0.003, Fisher's Exact test). A high frequency of antibody response against MSP-1 and AMA-1 peptides was observed for all P. vivax CS genotypes in comparison to the same frequency for DBP.Conclusions: This results target that the differences among the P. vivax CS variants are restrict to the central repeated region of the protein, mostly nucleotide variation with important serological consequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genes involved in host-pathogen interactions are often strongly affected by positive natural selection. The Duffy antigen, coded by the Duffy antigen receptor for chemokines (DARC) gene, serves as a receptor for Plasmodium vivax in humans and for Plasmodium knowlesi in some nonhuman primates. In the majority of sub-Saharan Africans, a nucleic acid variant in GATA-1 of the gene promoter is responsible for the nonexpression of the Duffy antigen on red blood cells and consequently resistance to invasion by P. vivax. The Duffy antigen also acts as a receptor for chemokines and is expressed in red blood cells and many other tissues of the body. Because of this dual role, we sequenced a 3,000-bp region encompassing the entire DARC gene as well as part of its 5' and 3' flanking regions in a phylogenetic sample of primates and used statistical methods to evaluate the nature of selection pressures acting on the gene during its evolution. We analyzed both coding and regulatory regions of the DARC gene. The regulatory analysis showed accelerated rates of substitution at several sites near known motifs. Our tests of positive selection in the coding region using maximum likelihood by branch sites and maximum likelihood by codon sites did not yield statistically significant evidence for the action of positive selection. However, the maximum likelihood test in which the gene was subdivided into different structural regions showed that the known binding region for P. vivax/P. knowlesi is under very different selective pressures than the remainder of the gene. In fact, most of the gene appears to be under strong purifying selection, but this is not evident in the binding region. We suggest that the binding region is under the influence of two opposing selective pressures, positive selection possibly exerted by the parasite and purifying selection exerted by chemokines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasion of erythrocytes by malaria parasites is mediated by specific molecular interactions. Whereas Plasmodium vivax and Plasmodium knowlesi use the Duffy blood group antigen, Plasmodium falciparum uses sialic acid residues of glycophorin A as receptors to invade human erythrocytes. P. knowlesi uses the Duffy antigen as well as other receptors to invade rhesus erythrocytes by multiple pathways. Parasite ligands that bind these receptors belong to a family of erythrocyte-binding proteins (EBP). The EBP family includes the P. vivax and P. knowlesi Duffy-binding proteins, P. knowlesi β and γ proteins, which bind alternate receptors on rhesus erythrocytes, and P. falciparum erythrocyte-binding antigen (EBA-175), which binds sialic acid residues of human glycophorin A. Binding domains of each EBP lie in a conserved N-terminal cysteine-rich region, region II, which contains around 330 amino acids with 12 to 14 conserved cysteines. Regions containing binding residues have now been mapped within P. vivax and P. knowlesi β region II. Chimeric domains containing P. vivax region II sequences fused to P. knowlesi β region II sequences were expressed on the surface of COS cells and tested for binding to erythrocytes. Binding residues of P. vivax region II lie in a 170-aa stretch between cysteines 4 and 7, and binding residues of P. knowlesi β region II lie in a 53-aa stretch between cysteines 4 and 5. Mapping regions responsible for receptor recognition is an important step toward understanding the structural basis for the interaction of these parasite ligands with host receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Open reading frames in the Plasmodium falciparum genome encode domains homologous to the adhesive domains of the P. falciparum EBA-175 erythrocyte-binding protein (eba-175 gene product) and those of the Plasmodium vivax and Plasmodium knowlesi Duffy antigen-binding proteins. These domains are referred to as Duffy binding-like (DBL), after the receptor that determines P. vivax invasion of Duffy blood group-positive human erythrocytes. Using oligonucleotide primers derived from short regions of conserved sequence, we have developed a reverse transcription-PCR method that amplifies sequences encoding the DBL domains of expressed genes. Products of these reverse transcription-PCR amplifications include sequences of single-copy genes (including eba-175) and variably transcribed genes that cross-hybridize to multiple regions of the genome. Restriction patterns of the multicopy genes show a high degree of polymorphism among different parasite lines, whereas single-copy genes are generally conserved. Characterization of the single-copy genes has identified a gene (ebl-1) that is related to eba-175 and is likely to be involved in erythrocyte invasion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Plasmodium vivax malaria is a major public health challenge in Latin America, Asia and Oceania, with 130-435 million clinical cases per year worldwide. Invasion of host blood cells by P. vivax mainly depends on a type I membrane protein called Duffy binding protein (PvDBP). The erythrocyte-binding motif of PvDBP is a 170 amino-acid stretch located in its cysteine-rich region II (PvDBP(II)), which is the most variable segment of the protein. Methods: To test whether diversifying natural selection has shaped the nucleotide diversity of PvDBP(II) in Brazilian populations, this region was sequenced in 122 isolates from six different geographic areas. A Bayesian method was applied to test for the action of natural selection under a population genetic model that incorporates recombination. The analysis was integrated with a structural model of PvDBP(II), and T-and B-cell epitopes were localized on the 3-D structure. Results: The results suggest that: (i) recombination plays an important role in determining the haplotype structure of PvDBP(II), and (ii) PvDBP(II) appears to contain neutrally evolving codons as well as codons evolving under natural selection. Diversifying selection preferentially acts on sites identified as epitopes, particularly on amino acid residues 417, 419, and 424, which show strong linkage disequilibrium. Conclusions: This study shows that some polymorphisms of PvDBP(II) are present near the erythrocyte-binding domain and might serve to elude antibodies that inhibit cell invasion. Therefore, these polymorphisms should be taken into account when designing vaccines aimed at eliciting antibodies to inhibit erythrocyte invasion.