973 resultados para DOMINANT FOLLICLE
Resumo:
Avaliaram-se os efeitos da progesterona (P4) sobre o crescimento folicular e na endocrinologia reprodutiva em ovelhas Bergamácia. Quatorze ovelhas sincronizadas com prostaglandinas (PGF2alfa ) foram distribuídas em dois grupos (n=7/grupo): grupo-controle e grupo tratado com progesterona (CIDR) depois da ovulação (dia zero). Desde o dia anterior à aplicação de PG até o dia 10, realizaram-se monitoramentos ultra-sonográficos para estabelecer o crescimento folicular. Amostras de sangue foram colhidas para a determinação de P4 desde o dia anterior à aplicação de PG até o dia 10 depois da ovulação. Para o perfil dos pulsos de hormônio luteinizante (LH), as colheitas de sangue ocorreram em intervalos de 30 minutos por um período de oito horas, nos dias um e seis. As taxas de crescimento diferiram (P<0,001) entre os grupos, 0,91±0,15 e 0,70±0,16mm/dia para os grupos controle e tratado, respectivamente. Os dias do platô dos animais controle e tratados foram de 1,9±0,72 e 2,9±0,45 (P<0,05), respectivamente. As concentrações médias de progesterona (P<0,001) foram diferentes entre os tratamentos. A freqüência dos pulsos diferiu no primeiro dia do ciclo (P<0,01), com valores de 2,55±0,09 pulsos/8 horas no grupo-controle e de 1,49±0,11 pulsos/8 horas no grupo tratado. No sexto dia, o grupo-controle 2,20±0,09 pulsos/8 horas apresentou maior número de pulsos (P<0,05) que o grupo tratado, 1,22±0,11 pulsos/8 horas. Os efeitos inibitórios da progesterona exógena no diâmetro do folículo dominante foram mediados pela redução na freqüência dos pulsos de LH.
Resumo:
Estrous behavior and the estrus-to-ovulation interval are essential for estimating the best time to artificially inseminate cattle. Because these parameters are not well characterized in the Nelore breed (Bos indicus), the main purpose of the this study was to determine the estrus-to-ovulation interval in Nelore heifers and cows with natural estrus or with estrus induced by treatments with PGF2 alpha or norgestomet and estradiol valerate (NEV). The cows and heifers were observed continuously (24 h a day) to determine the onset of estrus and to study estrous behavior in the cows. Ten hours after the start of estrus the ovaries were scanned every 2 h by ultrasonography to monitor the dominant follicle until ovulation. Blood samples were collected periodically to determine progesterone levels by RIA. Administration of PGF2 alpha (2 injections, 11 days apart) did not induce estrus in most Nelore females in spite of the presence of functional CL, indicated by progesterone concentrations above 6.0 ng/ml in 25 of 28 animals. Treatment with NEV induced high sexual receptivity in cows (10/11), but only 66% ovulated. Cows with natural or induced estrus exhibited behavioral estrus of 10.9 +/- 1.4 h, and ovulation occurred 26.6 +/- 0.44 h (n = 26) after the onset of estrus. In most of the cows (53.8%) estrus began at night (between 1801 and 600 h), and 34.6% it started and finished during the night. It is concluded that in Nelore females ovulation occurs approximately 26 h after the onset of estrus. Additionally, estrous behavior is shorter than in European breeds, and there is a high incidence of estrus at night, which makes it difficult to detect and, consequently, impairs Al in Nelore cattle. The observation that a high percentage of Nelore females with an active CL did not respond to usual dosages of PGF2 alpha warrants further investigation. (C) 1998 by Elsevier B.V.
Resumo:
The objective of this study was to evaluate protocols for synchronizing ovulation in beef cattle. In Experiment 1, Nelore cows (Bos indicus) at random stages of the estrous cycle were assigned to 1 of the following treatments: Group GP controls (nonlactating, n=7) received GnRH agonist (Day 0) and PGF2 alpha (Day 7); while Groups GPG (nonlactating, n=8) and GPG-L (lactating, n=9) cows were given GnRH (Day 0), PGF2a (Day 7) and GnRH again (Day 8, 30 h after PGF2 alpha). A new follicular wave was observed 1.79+/-0.34 d after GnRH in 19/24 cows. After PGF2a, ovulation occurred in 19/24 cows (6/7 GP, 6/8 GPG, 7/9 GPG-L). Most cows (83.3%) exhibited a dominant follicle just before PGF2a, and 17/19 ovulatory follicles were from a new follicular wave. There was a more precise synchrony of ovulation (within 12 h) in cows that received a second dose of GnRH (GPG and GPG-L) than controls (GP, ovulation within 48 h; P<0.01). In Experiment 2, lactating Nelore cows with a visible corpus luteum (CL) by ultrasonography were allocated to 2 treatments: Group GPE (n=10) received GnRH agonist (Day 0), PGF2a (Day 7) and estradiol benzoate (EB; Day 8, 24 h after PGF2 alpha); while Group EPE (n=11), received EB (Day 0), PGF2a (Day 9) and EB (Day 10, 24 h after PGF2a). Emergence of a new follicular wave was observed 1.6+/-0.31 d after GnRH (Group GPE). After EB injection (Day 8) ovulation was observed at 45.38+/-2.03 h in 7/10 cows within 12 h. In Group EPE the emergence of a new follicular wave was observed later (4.36+/-0.31 d) than in Group GEP (1.6+/-0.31 d; P<0.001). After the second EB injection (Day 10) ovulation was observed at 44.16+/-2.21 h within 12 (7/11 cows) or 18 h (8/11 cows). All 3 treatments were effective in synchronizing ovulation in beef cows. However, GPE and, particularly EPE treatments offer a promising alternative to the GPG protocol in timed artificial insemination of beef cattle, due to the low cost of EB compared with GnRH agonists. (C) 2000 by Elsevier B.V.
Resumo:
Avaliaram-se as concentrações hormonais e os parâmetros de desenvolvimento folicular de vacas leiteiras expostas ao calor sazonal e agudo. Dividiram-se os animais em quatro grupos: verão (n=5), outono (n=5), inverno com hipertermia aguda (grupo câmara climática, (CC), n=5) e inverno (n=9). Os animais foram abatidos no sétimo dia após a ovulação, e os parâmetros de desenvolvimento folicular avaliados. O líquido folicular do maior folículo foi aspirado e armazenado para posterior análise de hormônios esteróides e inibina. O número de células da granulosa vivas no verão e no outono foi 40 e 45% respectivamente, menor que no inverno (P<0,05). A concentração de estradiol (E2) no inverno foi 62% maior que no outono (P<0,05) e 34% superior ao grupo verão (P<0,06). Houve um aumento na quantidade de androstenediona no verão em relação aos grupos inverno (P<0,08) e outono (P<0,05). A concentração de inibina foi maior no inverno do que no verão e CC (P<0,05). A exposição ao calor sazonal e agudo modificou os parâmetros de desenvolvimento do folículo e as concentrações hormonais no líquido folicular, podendo explicar em parte a queda nas taxas de concepção no verão.
Resumo:
Vacas da raça Holandesa não-lactantes, distribuídas em dois grupos, foram sincronizadas com o protocolo Ovsynch modificado. No dia sete (dia 0 = dia do segundo GnRH), o grupo 7 (G-7; n=19) recebeu CIDR usado previamente por cinco dias e 100mcg de GnRH, e o grupo 14 (G-14; n=21), CIDR e 25mg de PGF2alfa. No dia 14 foi aspirado o folículo dominante (FD), trocado o CIDR usado por um novo e foram aplicados 25mg de PGF2alfa. Iniciou-se o tratamento com FSH 36h depois, removeu-se o CIDR com o sétimo FSH e aplicou-se GnRH 36h depois. As inseminações foram feitas 12 e 24h depois. Recuperaram-se os embriões sete dias depois da inseminação artificial. O diâmetro do FD no G-7 foi 13,1±0,57mm no dia sete e 11,2±0,57mm no dia 14. O diâmetro FD persistente no G-14 aumentou de 12,6±0,55mm no dia sete para 16,4±0,55mm no dia 14 (P<0,001). O número de folículos >8mm, 48h após o início do tratamento com FSH, foi maior (P<0,05) no G-7 (15,6±0,05) que no G-14 (12,5±0,05). Não foi detectado efeito de tratamento sobre o número de corpos lúteos e de embriões. O menor intervalo entre recrutamentos foliculares aumentou o número de folículos recrutados, porém não alterou a quantidade e a qualidade dos embriões produzidos.
Resumo:
The most common beef cattle raised in Brazil is the Nelore breed (Bos indicus). Information obtained by ultrasonography on follicular growth in Bos taurus cattle has been accumulating rapidly. However, there are few publications to date on follicular development in Bos indicus breeds. The follicular dynamics in Nelore heifers and cows during natural or prostaglandin (PG)-induced estrous cycle were studied. From the detection of estrus onward, all animals were examined daily by ultrasonography for one (n=35) or two (n=10) consecutive estrous cycles. The follicular dynamic in Nelore cattle was characterized by the predominance of 2 follicular waves in the cows (83.3%, n=18, P<0.05) and 3 waves in the heifers (64.7%, n=16, P<0.05). Most of the cattle observed over 2 consecutive estrous cycles presented the same pattern of follicular waves in the first and second cycle, and only 30% showed variation in the number of waves from one cycle to the other. Most of the follicular parameters analyzed were not affected by PG treatment or age but were altered by follicular waves. Consequently, data on cows and heifers were combined according to the number of follicular waves. The ovulatory follicle was larger than the other dominant follicles (P<0.05), and the ovulatory wave was shorter than the preceding waves (P<0.05). The interovulatory interval was longer in animals showing 3 waves than those exhibiting 2 waves (P<0.05). Maximum diameter of the dominant follicle (around 11 mm) and of the corpus luteum (CL, approximately 17 mm) were smatter than those reported for European breeds. In conclusion, the results demonstrate that although the dominant follicle and corpus luteum are smaller than in European breeds, the follicular dynamics in Nelore cattle were similar to those observed in European breeds and were characterized by 2 or 3 follicular waves for cows and heifers, respectively, during the natural or prostaglandin-induced estrous cycle. (C) 1997 by Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Ovarian follicular activity was studied by ultrasonography during 17 oestrous cycles in 9 Mangalarga mares during the second half of the ovulatory season. Sixteen oestrous cycles were considered normal and one 3-wave cycle showing a prolonged luteal phase was considered atypical. Daily ultrasonographic examinations were performed and the compiled data on follicular dynamics were studied retrospectively. One major wave of follicular growth was observed in 13 of the 16 normal cycles (81.25%), whereas 2 major waves occurred in 3 cycles (18.75%). The mean (+/- s.d.) days of emergence of the primary wave of follicular development in cycles containing one or 2 waves were Day 6.0 +/- 2.3 and Day 11.0 +/- 1.0, respectively. The secondary wave of follicular development in 2-wave cycles emerged on Day 0.0 +/- 3.6. The day of wave divergence for primary waves of follicular development in cycles which exhibited one or 2 major waves were Day 12.2 +/- 3.5 and Day 17.3 +/- 3.0, respectively. Divergence of secondary waves occurred in only one of the 3 cycles which exhibited 2 major follicular waves (Day 7). The mean (+/- s.d.) maximum diameters of the dominant follicle in the primary wave of oestrous cycles exhibiting one and 2 major waves were 39.0 +/- 3.9 mm and 34.7 +/- 2.5 mm, respectively. The mean (+/- s.d.) maximum diameter of the dominant follicle present in the secondary wave was 34.3 +/- 11.0 mm. The mean (+/- s.d.) lengths of the interovulatory intervals for cycles containing one and 2 major waves were 19.4 +/- 2.2 and 23.3 +/- 2.5 days, respectively. These data indicate that most Mangalarga mares show one major follicular wave during the oestrous cycle but a small percentage of mares show 2 major waves.
Resumo:
The objective of the present study was to characterize ovarian follicular dynamics and hormone concentrations during follicular deviation in the first wave after ovulation in Nelore (Bos indicus) heifers. Ultrasonographic exams were performed and blood samples were collected every 12 h from the day of estrus until 120-144 h after ovulation in seven females. Deviation was defined as the point at which the growth rate of the dominant follicle became greater than the growth rate of the largest subordinate follicle. Deviation occurred approximately 65 h after ovulation. Growth rate of the dominant follicle increased (P < 0.05) after deviation, while growth rate of the subordinate follicle decreased (P < 0.05). Diameter of the dominant follicle did not differ from the subordinate follicle at deviation (approximately 5.4 mm). The dominant follicle (7.6 mm) was larger (P < 0.05) than the subordinate follicle (5.3 mm) 96 h after ovulation or 24 h after deviation. Plasma FSH concentrations did not change significantly during the post-ovulatory period. The first significant increase in mean plasma progesterone concentration occurred on the day of follicular deviation. In conclusion, the interval from ovulation to follicular deviation (2.7 days) was similar to that previously reported in B. taurus females, but follicles were smaller. Diameters of the dominant follicle and subordinate follicle did not differ before deviation and deviation was characterized by an increase in dominant follicle and decrease in subordinate follicle growth rate. Variations in FSH concentrations within 12-h intervals were not involved in follicular deviation in Nelore heifers. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The ovarian activity was accessed by ultrasound throughout 10 estrous cycles from Jennies (Marchador Brasileira). Daily ultrasound examinations were performed and the dada was retrospectively studied based on daily identification of each follicle detected. Blood samples were collected every 24 hours from ovulation (D0) until the next identified ovulation. The follicles measuring 11mm were detected and their mean diameter was registered daily using an ovarian map and permitting a retrospective evaluation of the dada, which represented the follicular growth dynamics. One and two major follicular waves were detected in six (60%) and four (40%) cycles respectively from ten estrous cycles in the present study. The primary wave emergency and follicle deviation from the cycles observed during the present study with one major follicular wave occurred at day 10.2 ± 0.75 and at day14.1 ± 0.81 and for cycles with two major waves, those events occurred at 9.0 ± 2.0 and 14.0 ± 1.15 days after ovulation. The maximum diameter of the dominant follicle at the cycles with one and two follicular waves were 37.2 ± 3.35 mm and 37.3 ± 1.1, respectively. The mean intervals from two ovulations were 23.0 ± 1.79 and 22.3 ± 1.26 days when observed in cycles with one and two major follicular waves. The maximum diameter of the dominant follicle was slightly smaller when double ovulations were observed if compared with the single ovulations (P > 0.05). It can be concluded that wave emergency period is observed around 9.6 days of the estrous cycle and the occurrence of deviation can be observed on day 14 of the estrous cycle.
Resumo:
Background: Although there is some information in the literature discussing differences of the estrous cycle of Bos taurus and Bos indicus cattle, most of the data derive from studies performed in temperate climate countries, under environmental and nutritional conditions very different than those found in tropical countries. Moreover, the physiological basis for understanding the differences between Bos taurus and Bos indicus estrous cycles are still unknown. This review explores the physiological and metabolic bases for understanding the key differences between the Bos taurus and Bos indicus estrous cycle. Moreover, it presents recent results of studies that have directly compared reproductive variables between Zebu and European cattle. Review: The knowledge of reproductive physiology, especially the differences between Bos taurus and Bos indicus, is important for the development and application of different techniques of reproductive management in cattle. In this regard, overall, Bos indicus have a greater number of small ovarian follicles and ovulatory follicles are smaller as compared to Bos taurus. Consequently, Zebu cattle also have smaller corpus luteum (CL). Nevertheless, circulating concentrations of steroid and metabolic hormones are not necessarily higher in European cattle. In fact, some studies have shown that despite ovulating smaller follicles and having smaller CL, Bos indicus cows or heifers have higher circulating concentrations of estradiol, progesterone, insulin and IGF-I compared to Bos taurus females. In addition, there are also substantial differences between Bos indicus and Bos taurus cattle in relation to follicle size at the time of selection of the dominant follicle. Conclusion: Data from very recent studies performed in Brazil have corroborated results from previous reports that have observed substantial differences in the estrous cycle variables of Bos indicus versus Bos taurus cattle. Those differences are probably related to distinct metabolism and metabolic hormone concentrations between Zebu and European cattle. This increased knowledge will allow for the establishment of more adequate reproductive management protocols in both breeds of cattle.
Resumo:
The objective was to evaluate the effects of plasma progesterone (P4) concentrations and exogenous eCG on ovulation and pregnancy rates of pubertal Nellore heifers in fixed-time artificial insemination (FTAI) protocols. In Experiment 1 (Exp. 1), on Day 0 (7 d after ovulation), heifers (n = 15) were given 2 mg of estradiol benzoate (EB) im and randomly allocated to receive: an intravaginal progesterone-releasing device containing 0.558 g of P4 (group 0.5G, n = 4); an intravaginal device containing 1 g of P4 (group 1G, n = 4); 0.558 g of P4 and PGF2α (PGF; 150 μg d-cloprostenol, group 0.5G/PGF, n = 4); or 1 g of P4 and PGF (group 1G/PGF, n = 3). On Day 8, PGF was given to all heifers and intravaginal devices removed; 24 h later (Day 9), all heifers were given 1 mg EB im. In Exp. 2, pubertal Nellore heifers (n = 292) were treated as in Exp. 1, with FTAI on Day 10 (30 to 36 h after EB). In Exp. 3, pubertal heifers (n = 459) received the treatments described for groups 0.5G/PGF and 1G/PGF and were also given 300 IU of eCG im (groups 0.5G/PGF/eCG and 1G/PGF/eCG) at device removal (Day 8). In Exp. 1, plasma P4 concentrations were significantly higher in heifers that received 1.0 vs 0.588 g P4, and were significantly lower in heifers that received PGF on Day 0. In Exp. 2 and 3, there were no significant differences among groups in rates of ovulation (65-77%) or pregnancy (Exp. 2: 26-33%; Exp. 3: 39-43%). In Exp. 3, diameter of the dominant ovarian follicle on Day 9 was larger in heifers given 0.558 g vs 1.0 g P4 (10.3 ± 0.2 vs 9.3 ± 0.2 mm; P < 0.01). In conclusion, lesser amounts of P4 in the intravaginal device or PGF on Day 0 decreased plasma P4 from Days 1 to 8 and increased diameter of the dominant follicle on Day 9. However, neither of these nor 300 IU of eCG on Day 8 significantly increased rates of ovulation or pregnancy. © 2011.
Resumo:
Bos indicus cattle, the preferred genetic group in tropical climates, are characterized by having a lower reproductive efficiency than Bos taurus. The reasons for the poorer reproductive efficiency of the Bos indicus cows include longer lengths of gestation and postpartum anestrus, a short length of estrous behavior with a high incidence of estrus occurring during the dark hours, and puberty at older age and at a higher percentage of body weight relative to mature body weight. Moreover, geography, environment, economics, and social traditions are factors contributing for a lower use of reproductive biotechnologies in tropical environments. Hormonal protocols have been developed to resolve some of the reproductive challenges of the Bos indicus cattle and allow artificial insemination, which is the main strategy to hasten genetic improvement in commercial beef ranches. Most of these treatments use exogenous sources of progesterone associated with strategies to improve the final maturation of the dominant follicle, such as temporary weaning and exogenous gonadotropins. These treatments have caused large impacts on reproductive performance of beef cattle reared under tropical areas. Copyright © 2011 O. G. Sá Filho and J. L. M. Vasconcelos.
Resumo:
The aim of this work was to study estrus synchronization and fixed time artificial insemination (FTAI) in dairy buffaloes during season anestrus. One hundred thirty-nine dairy buffaloes in seasonal anestrus were divided in two groups as G1(n=66) and G2(n=73). The protocols for both the groups were the same until day (D)14:D0 administration of 2.0 mg estradiol benzoate and implantation of progesterone device (P4) for 14 days; D14 removal of P4 plus 150 mg of cloprostenol and 400 IU of equine chorionic gonadotropin. On D16, G1 received 10 mg of buserelin and G2 100 mg deslorelin acetate. On D17, both the groups were submitted to FTAI. Ultrasonographic examinations of ovaries were performed on D0, D14, D16 and D17. Results showed that pregnancy rates in G1 and G2 were 20 and 41% (p<0.05) and the ovulation rates were 16.6 and 37%, respectively (p<0.05). The dominant follicle (DF) diameter on D16 was 7.9 mm in G1 and 8.9 mm in G2 (p>0.05). Thirty-five percent of the animals in G1 and 54.1% in G2 showed a diameter DF greater than 8.0 mm on D16 (p>0.05). Thus, it could be concluded that the protocols synchronized the estrus, leading the concentration of the parturitions in the period of low milk production. Deslorelin was more efficient than buserelin due the higher percentage of DF ovulation and higher pregnancy rates.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)