980 resultados para DNA modified electrodes
Resumo:
in this work. nickel hexacyanoferrate-modified electrode was developed to determine potassium ions in biodiesel by potentiometry. The modified electrodes exhibit a linear response to potassium ions in the concentration range of 4.0 x 10(-5) to 1.0 x 10(-2) mol L-1, with a detection limit of 1.9 x 10(-5) mol L-1. and a near-Nernstian slope (53-55 mV per decade) at 25 degrees C. The method developed in this work was compared with flame photometry and the potassium concentration found in biodiesel showed that the modified electrode method gives results similar to those obtained by flame photometry. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A mercury-sensitive chemically modified electrode (CME) based on modified silica gel-containing carbon paste was developed. The functional group attached to the silica gel surface was 3-(2-thiobenzimidazolyl)propyl, which is able to complex mercury ions. This electrode was applied to the determination of mercury(II) ions in aqueous solution. The mercury was chemically preconcentrated on the CME prior to voltammetric determination by anodic stripping in the differential-pulse mode. A calibration graph covering the concentration range from 0.08 to 2 mg l-1 was constructed. The precision for six determinations of 0.122 and 0.312 mg l-1 Hg(II) was 3.2 and 2.9% (relative standard deviation), respectively. The detection limit for a 5-min preconcentration period was 0.013 mg l-1. A study for foreign ions was also made.
Resumo:
Prussian blue [PB, iron(III) hexacyanoferrate(II)] films are effective for the electrocatalysis of the persulfate (peroxodisulfate)/sulfate redox system. This has been exploited in the voltammetric determination of persulfate anions using a PB-modified platinum disc electrode. A linear correlation between electrocatalytic current and persulfate concentration was found for the range 5 x 10(-5) to 3 x 10(-3) mol dm(-3), using 0.100 mol dm(-3) potassium chloride as supporting electrolyte at pH 4. This analytical method has the advantages of speed and ease of operation in relation to traditional titrimetric methods for persulfate determination. The applicability of the method to the determination of persulfate in a commercial hair bleaching 'booster' product is demonstrated. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Pyrazinamide (Pyrazinecarboxamide-PZA) is a drug that is used to treatment tuberculosis. In the present work, the voltammetric behavior of PZA was studied using a screen-printed modified electrode (SPCE). The modified electrode was constructed using poly-histidine films, and it showed an electrocatalytic effect, thus promoting a decrease in PZA reduction potential and improving the voltammetric response. Cyclic voltammetry and electrochemical impedance spectroscopy techniques have been employed in order to elucidate of the electrodic reaction. The results allowed the proposal that in the PZA reduction, a further chemical reaction occurs that corresponds to a second-order process which is subsequent to the electrode reaction. In addition, a sensitive voltammetric method was developed, and it was successfully applied for PZA determination in human urine samples. The best response was found using SPCE modified with poly-histidine prepared by histidine monomer electropolymerization (SPCE/EPH). The electroanalytical performance of the SPCE/EPH was investigated by linear sweep (LSV), differential pulse (DPV), and square wave voltammetry (SWV). A linear relationship between peak current and PZA concentrations was obtained from 9.0 × 10-7 to 1.0 × 10-4 mol L-1 by using DPV. The limit of detection at 5.7 × 10 -7 mol L-1 was estimated, and a relative standard deviation of the 5.0 × 10-6 mol L-1 of PZA of 10 measurement was 3.7%. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJECTIVE The treatment of lupus nephritis is still an unmet medical need requiring new therapeutic approaches. Our group found recently that irinotecan, an inhibitor of topoisomerase I (topo I), reversed proteinuria and prolonged survival in mice with advanced lupus nephritis. While irinotecan is known to stabilize the complex of topo I and DNA, the enzyme tyrosyl-DNA phosphodiesterase 1 (TDP-1) functions in an opposing manner by releasing topo I from DNA. Therefore, we undertook this study to test whether the TDP-1 inhibitor furamidine has an additional effect on lupus nephritis when used in combination with irinotecan. METHODS NZB/NZW mice were treated with low-dose irinotecan and furamidine either alone or in combination beginning at age 26 weeks. DNA relaxation was visualized using gel electrophoresis. Binding of anti-double-stranded DNA (anti-dsDNA) antibodies to DNA modified by topo I, TDP-1, and the topo I inhibitor camptothecin was determined by enzyme-linked immunosorbent assay. RESULTS Compared to treatment with either agent alone, simultaneous treatment with low-dose irinotecan and furamidine significantly improved survival of NZB/NZW mice. Similar to what has been previously shown for irinotecan alone, the combination treatment did not change the levels of anti-dsDNA antibodies. In vitro, recombinant TDP-1 increased topo I-mediated DNA relaxation, resulting in enhanced binding of anti-dsDNA antibodies. In combination with topo I and camptothecin, TDP-1 reversed the inhibitory effects of camptothecin on DNA relaxation and anti-dsDNA binding. CONCLUSION Affecting DNA relaxation by the enzymes topo I and TDP-1 and their inhibitors may be a promising approach for the development of new targeted therapies for systemic lupus erythematosus.
Resumo:
The relevance of reactive oxygen species (ROS) in the pathogenesis of inflammatory diseases is widely documented. Immunochemical detection of ROS DNA adducts has been developed, however, recognition of glyoxal-DNA adducts has not previously been described. We have generated a polyclonal antibody that has shown increased antibody binding to ROS-modified DNA in comparison to native DNA. In addition, dose-dependent antibody binding to DNA modified with ascorbate alone was shown, with significant inhibition by desferrioxamine, catalase, and ethanol. Minimal inhibition was observed with uric acid, 1,10-phenanthroline and DMSO. However, antibody binding in the presence of EDTA increased 3500-fold. The involvement of hydrogen peroxide and hydroxyl radical in ascorbate-mediated DNA damage is consistent with ascorbate acting as a reducing agent for DNA-bound metal ions. Glyoxal is known to be formed during oxidation of ascorbate. Glyoxylated DNA, that previously had been proposed as a marker of oxidative damage, was recognised in a dose dependent manner using the antibody. We describe the potential use of our anti-ROS DNA antibody, that detects predominantly Fenton-type mediated damage to DNA and report on its specificity for the recognition of glyoxal-DNA adducts.
Resumo:
Glyoxal, a reactive aldehyde, is a decomposition product of lipid hydroperoxides, oxidative deoxyribose breakdown, or autoxidation of sugars, such as glucose. It readily forms DNA adducts, generating potential carcinogens such as glyoxalated deoxycytidine (gdC). A major drawback in assessing gdC formation in cellular DNA has been methodologic sensitivity. We have developed an mAb that specifically recognizes gdC. Balb/c mice were immunized with DNA, oxidatively modified by UVC/hydrogen peroxide in the presence of endogenous metal ions. Although UVC is not normally considered an oxidizing agent, a UVC/hydrogen peroxide combination may lead to glyoxalated bases arising from hydroxyl radical damage to deoxyribose. This damaging system was used to induce numerous oxidative lesions including glyoxal DNA modifications, from which resulted a number of clones. Clone F3/9/H2/G5 showed increased reactivity toward glyoxal-modified DNA greater than that of the immunizing antigen. ELISA unequivocally showed Ab recognition toward gdC, which was confirmed by gas chromatography-mass spectrometry of the derivatized adduct after formic acid hydrolysis to the modified base. Binding of Ab F3/9 with glyoxalated and untreated oligomers containing deoxycytidine, deoxyguanosine, thymidine, and deoxyadenosine assessed by ELISA produced significant recognition (p 0.0001) of glyoxal-modified deoxycytidine greater than that of untreated oligomer. Additionally, inhibition ELISA studies using the glyoxalated and native deoxycytidine oligomer showed increased recognition for gdC with more than a 5-fold difference in IC50 values. DNA modified with increasing levels of iron (II)/EDTA produced a dose-dependent increase in Ab F3/9 binding. This was reduced in the presence of catalase or aminoguanidine. We have validated the potential of gdC as a marker of oxidative DNA damage and showed negligible cross-reactivity with 8-oxo-2'-deoxyguanosine or malondialdehyde-modified DNA as well as its utility in immunocytochemistry. Formation of the gdC adduct may involve intermediate structures; however, our results strongly suggest Ab F3/9 has major specificity for the predominant product, 5-hydroxyacetyl-dC.
Resumo:
The main research topic of the present master thesis consisted in the modification and electrochemical testing of inkjet printed graphene electrodes with a thin polymeric hydrogel layer made of cross-linked poly(N-isopropylacrylamide) (PNIPAAM) acting as a functional layer to fabricate selective sensors. The first experimental activities dealt with the synthesis of the polymeric hydrogel and the modification of the active surface of graphene sensors through photopolymerization. Simultaneous inkjet printing and photopolymerization of the hydrogel precursor inks onto graphene demonstrated to be the most effective and reproducible technique for the modification of the electrode with PNIPAAM. The electrochemical performance of the modified electrodes was tested through cyclic voltammetry. Voltammograms with standard redox couples with either positive, neutral or negative charges, suggested an electrostatic filtering effect by the hydrogel blocking negatively charged redox species in near neutral pH electrolyte solutions from reaching the electrode surface. PNIPAAM is a known thermo-responsive polymer, but the variation of temperature did not influence the filtering properties of the hydrogels for the redox couples studied. However, a variation of the filter capacity of the material was observed at pH 2 in which the PNIPAAM hydrogel, most likely in protonated form, became impermeable to positively charged redox species and permeable to negatively charged species. Finally, the filtering capacity of the electrodes modified with PNIPAAM was evaluated for the electrochemical determination of analytes in presence of negatively charge potential interferents, such as antioxidants like ascorbic acid. The outcome of the final experiments suggested the possibility to use the inkjet-printed PNIPAAM thin layer for electroanalytical applications as an electrostatic filter against interferents of opposite charges, typically present in complex matrices, such as food and beverages.
Resumo:
The present review paper describes the main features of nickel hydroxide modified electrodes covering its structural and electrochemical behavior and the newest advances promoted by nanostructured architectures. Important aspects such as synthetic procedures and characterization techniques such as X-Ray diffraction, Raman and Infrared spectroscopy, Electronic Microscopy and many others are detailed herein. The most important aspect concerning nickel hydroxide is related to its great versatility covering different fields in electrochemical-based devices such as batteries, electrocatalytic systems and electrochromic electrodes, the fundamental issues of these devices are also commented. Finally, some of the newest advances achieved in each field by the incorporation of nanomaterials will be shown.
Resumo:
This work describes the infrared spectroscopy characterization and the charge compensation dynamics in supramolecular film FeTPPZFeCN derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) with hexacyanoferrate, as well as the hybrid film formed by FeTPPZFeCN and polypyrrole (PPy). For supramolecular film, it was found that anion flux is greater in a K+ containing solution than in Li+ solution, which seems to be due to the larger crystalline ionic radius of K+. The electroneutralization process is discussed in terms of electrostatic interactions between cations and metallic centers in the hosting matrix. The nature of the charge compensation process differs from others modified electrodes based on Prussian blue films, where only cations such as K+ participate in the electroneutralization process. In the case of FeTPPZFeCN/PPy hybrid film, the magnitude of the anions’s flux is also dependent on the identity of the anion of the supporting electrolyte.
Resumo:
An amperometric lactate biosensor with lactate oxidase immobilized into a Prussian Blue (PB) modified electrode was fabricated. The advantage of using cetyltrimethylammonium bromide (CTAB) in the electrodeposition step of PB films onto glassy carbon surfaces was confirmed taking into account both the stability and sensitivity of the measurements. The biosensor was used in the development of a FIA amperometric method for the determination of lactate. Under optimal operating conditions (pH = 6.9, E = -0.1 V), the linear response of the method was extended up to 0.28 µmol L-1 lactate with a limit of detection of 0.84 mmol L-1. The repeatability of the method for injections of a 0.28 mmol L-1 lactate solution was 2.2 % (n = 18). The usefulness of the method was demonstrated by determining lactate in beer samples and the results were in good agreement with those obtained by using a reference spectrophotometric enzyme method.
Resumo:
The combination of metallic phthalocyanines (MPcs) and biomolecules has been explored in the literature either as mimetic systems to investigate molecular interactions or as supporting layers to immobilize biomolecules. Here, Langmuir-Blodgett (LB) films containing the phospholipid dimyristoyl phosphatidic acid (DMPA) mixed either with iron phthalocyanine (FePc) or with lutetium bisphthalocyanine (LuPc(2)) were applied as ITO modified-electrodes in the detection of catechol using cyclic voltammetry. The mixed Langmuir films of FePc + DMPA and LuPc(2) + DMPA displayed surface-pressure isotherms with no evidence of molecular-level interactions. The Fourier Transform Infrared (FTIR) spectra of the multilayer LB films confirmed the lack of interaction between the components. The DMPA and the FePc molecules were found to be oriented perpendicularly to the substrate, while LuPc(2) molecules were randomly organized. The phospholipid matrix induced a remarkable electrocatalytic effect on the phthalocyanines; as a result the mixed LB films deposited on ITO could be used to detect catechol with detection limits of 4.30 x 10(-7) and 3.34 x 10(-7) M for FePc + DMPA and LuPc(2) + DMPA, respectively. Results from kinetics experiments revealed that ion diffusion dominated the response of the modified electrodes. The sensitivity was comparable to that of other non-enzymatic sensors, which is sufficient to detect catechol in the food industry. The higher stability of the electrochemical response of the LB films and the ability to control the molecular architecture are promising for further studies with incorporation of biomolecules.
Resumo:
Prussian Blue has been introduced as a mediator to achieve stable, sensitive, reproducible, and interference-free biosensors. However, Na(+), Li(+), H(+), and all group II cations are capable to block the activity of Prussian Blue and, because Na(+) can be found in most human fluids, Prussian Blue analogs have already been developed to overcome this problem. These analogs, such as copper hexacyanoferrate, have also been introduced in a conducting polypyrrole matrix to create hybrid materials (copper hexacyanoferrate/polypyrrole, CuHCNFe/Ppy) with improved mechanical and electrochemical characteristics. Nowadays, the challenges in amperometric enzymatic biosensors consist of improving the enzyme immobilization and in making the chemical signal transduction more efficient. The incorporation of nanostructured materials in biosensors can optimize both steps and a nanostructured hybrid CuHCNFe/Ppy mediator has been developed using a template of colloidal polystyrene particles. The nanostructured material has achieved sensitivities 7.6 times higher than the bulk film during H(2)O(2) detection and it has also presented better results in other analytical parameters such as time response and detection limit. Besides, the nanostructured mediator was successfully applied at glucose biosensing in electrolytes containing Prussian Blue blocking cations. (C) 2008 The Electrochemical Society.
Resumo:
The 'blue copper' enzyme bilirubin oxidase from Myrothecium verrucaria shows significantly enhanced adsorption on a pyrolytic graphite 'edge' (PGE) electrode that has been covalently modified with naphthyl-2-carboxylate functionalities by diazonium coupling. Modified electrodes coated with bilirubin oxidase show electrocatalytic voltammograms for the direct, four-electron reduction of O(2) by bilirubin oxidase with up to four times the current density of an unmodified PGE electrode. Electrocatalytic voltammograms measured with a rapidly rotating electrode (to remove effects of O(2) diffusion limitation) have a complex shape (an almost linear dependence of current on potential below pH 6) that is similar regardless of how PGE is chemically modified. Importantly, the same waveform is observed if bilirubin oxidase is adsorbed on Au(111) or Pt(111) single-crystal electrodes (at which activity is short-lived). The electrocatalytic behavior of bilirubin oxidase, including its enhanced response on chemically-modified PGE, therefore reflects inherent properties that do not depend on the electrode material. The variation of voltammetric waveshapes and potential-dependent (O(2)) Michaelis constants with pH and analysis in terms of the dispersion model are consistent with a change in rate-determining step over the pH range 5-8: at pH 5, the high activity is limited by the rate of interfacial redox cycling of the Type 1 copper whereas at pH 8 activity is much lower and a sigmoidal shape is approached, showing that interfacial electron transfer is no longer a limiting factor. The electrocatalytic activity of bilirubin oxidase on Pt(111) appears as a prominent pre-wave to electrocatalysis by Pt surface atoms, thus substantiating in a single, direct experiment that the minimum overpotential required for O(2) reduction by the enzyme is substantially smaller than required at Pt. At pH 8, the onset of O(2) reduction lies within 0.14 V of the four-electron O(2)/2H(2)O potential.