925 resultados para DNA Sequencing


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Next-generation sequencing (NGS) technologies have begun to revolutionize the field of haematological malignancies through the assessment of a patient's genetic makeup with a minimal cost. Significant discoveries have already provided a unique insight into disease initiation, risk stratification and therapeutic intervention. Sequencing analysis will likely form part of the routine diagnostic testing in the future. However, a number of important issues need to be addressed for that to become a reality with regard to result interpretation, laboratory workflow, data storage and ethical issues. In this review we summarize the contribution that NGS has already made to the field of haematological malignancies. Finally, we discuss the challenges that NGS technologies will bring in relation to data storage, ethical and legal issues and laboratory validation. Despite these challenges, we predict that high-throughput DNA sequencing will redefine haematological malignancies based on individualized genomic analysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mitochondria and Wolbachia are maternally inherited genomes that exhibit strong linkage disequilibrium in many organisms. We surveyed Wolbachia infections in 187 specimens of the fig wasp species, Ceratosolen solmsi, and found an infection prevalence of 89.3%. DNA sequencing of 20 individuals each from Wolbachia-infected and -uninfected subpopulations revealed extreme mtDNA divergence (up to 9.2% and 15.3% in CO1 and cytochrome b, respectively) between infected and uninfected wasps. Further, mtDNA diversity was significantly reduced within the infected group. Our sequencing of a large part of the mitochondrial genome from both Wolbachia-infected and -uninfected individuals revealed that high sequence divergence is common throughout the mitochondrial genome. These patterns suggest a partial selective sweep of mitochondria subsequent to the introduction of Wolbachia into C. solsmi, by hybrid introgression from a related species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Agarose gels stained with Ethidium bromide and Southern blot experiments of HindIII-digested genomic DNA of Achirus lineatus evidenced the presence of monomers and multimers of a DNA segment of about 200 bp, named here Al-HindIII sequence. No signals were observed in Southern blot experiments with genomic DNA of other flatfish species. The DNA sequencing of four recombinant clones showed that Al-HindIII sequences had 204 bp and were 63.72% AT-rich. FISH experiments using a Al-HindIII sequence as probe showed bright signals in the centromeric position of all chromosomes of A. lineatus.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As plataformas de sequenciamento de nova geração são uma alternativa poderosa para estudos de genômica estrutural e funcional. Na genômica de plantas, os trabalhos com as novas plataformas têm sido destinados ao sequenciamento de transcritos, ressequenciamento ou sequenciamento de novo de genomas plastidiais. Neste trabalho, são detalhadas as tecnologias das plataformas mais utilizadas atualmente, bem como é revisada a aplicação dessas tecnologias na genômica estrutural e funcional de plantas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sixty-five accessions of the species-rich freshwater red algal order Batrachospermales were characterized through DNA sequencing of two regions: the mitochondrial cox1 gene (664 bp), which is proposed as the DNA barcode for red algae, and the UPA (universal plastid amplicon) marker (370 bp), which has been recently identified as a universally amplifying region of the plastid genome. upgma phenograms of both markers were consistent in their species-level relationships, although levels of sequence divergence were very different. Intraspecific variation of morphologically identified accessions for the cox1 gene ranged from 0 to 67 bp (divergences were highest for the two taxa with the greatest number of accessions; Batrachospermum helminthosum and Batrachospermum macrosporum); while in contrast, the more conserved universal plastid amplicon exhibited much lower intraspecific variation (generally 0-3 bp). Comparisons to previously published mitochondrial cox2-3 spacer sequences for B. helminthosum indicated that the cox1 gene and cox2-3 spacer were characterized by similar levels of sequence divergence, and phylogeographic patterns based on these two markers were consistent. The two taxa represented by the largest numbers of specimens (B. helminthosum and B. macrosporum) have cox1 intraspecific divergence values that are substantially higher than previously reported, but no morphological differences can be discerned at this time among the intraspecific groups revealed in the analyses. DNA barcode data, which are based on a short fragment of an organellar genome, need to be interpreted in conjunction with other taxonomic characters, and additional batrachospermalean taxa need to be analyzed in detail to be able to draw generalities regarding intraspecific variation in this order. Nevertheless, these analyses reveal a number of batrachospermalean taxa worthy of more detailed DNA barcode study, and it is predicted that such research will have a substantial effect on the taxonomy of species within the Batrachospermales in the future.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With the advent of cheaper and faster DNA sequencing technologies, assembly methods have greatly changed. Instead of outputting reads that are thousands of base pairs long, new sequencers parallelize the task by producing read lengths between 35 and 400 base pairs. Reconstructing an organism’s genome from these millions of reads is a computationally expensive task. Our algorithm solves this problem by organizing and indexing the reads using n-grams, which are short, fixed-length DNA sequences of length n. These n-grams are used to efficiently locate putative read joins, thereby eliminating the need to perform an exhaustive search over all possible read pairs. Our goal was develop a novel n-gram method for the assembly of genomes from next-generation sequencers. Specifically, a probabilistic, iterative approach was utilized to determine the most likely reads to join through development of a new metric that models the probability of any two arbitrary reads being joined together. Tests were run using simulated short read data based on randomly created genomes ranging in lengths from 10,000 to 100,000 nucleotides with 16 to 20x coverage. We were able to successfully re-assemble entire genomes up to 100,000 nucleotides in length.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Sequencing based mutation screening assays of genes encompassing large numbers of exons could be substantially optimized by multiplex PCR, which enables simultaneous amplification of many targets in one reaction. In the present study, a multiplex PCR protocol originally developed for fragment analysis was evaluated for sequencing based mutation screening of the ornithine transcarbamylase (OTC) and the medium-chain acyl-CoA dehydrogenase (MCAD) genes. METHODS: Single exon and multiplex PCR protocols were applied to generate PCR templates for subsequent DNA sequencing of all exons of the OTC and the MCAD genes. For each PCR protocol and using the same DNA samples, 66 OTC and 98 MCAD sequence reads were generated. The sequences derived from the two different PCR methods were compared at the level of individual signal-to-noise ratios of the four bases and the proportion of high-quality base-signals. RESULTS: The single exon and the multiplex PCR protocol gave qualitatively comparable results for the two genes. CONCLUSIONS: Many existing sequencing based mutation analysis protocols may be easily optimized with the proposed method, since the multiplex PCR protocol was successfully applied without any re-design of the PCR primers and other optimization steps for generating sequencing templates for the OTC and MCAD genes, respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND Rare diseases in livestock animals are traditionally poorly diagnosed. Other than clinical description and pathological examination, the underlying causes have, for the most part, remained unknown. A single case of congenital skin fragility in cattle was observed, necropsy, histological and ultrastructural examinations were carried out and whole genome sequencing was utilized to identify the causative mutation. RESULTS A single purebred female Charolais calf with severe skin lesions was delivered full-term and died spontaneously after birth. The clinical and pathological findings exactly matched the gross description given by previous reports on epitheliogenesis imperfecta and epidermolysis bullosa (EB) in cattle. Histological and ultrastructural changes were consistent with EB junctionalis (EBJ). Genetic analysis revealed a previously unpublished ITGB4 loss-of-function mutation; the affected calf was homozygous for a 4.4 kb deletion involving exons 17 to 22, and the dam carried a single copy of the deletion indicating recessive inheritance. The homozygous mutant genotype did not occur in healthy controls of various breeds but some heterozygous carriers were found among Charolais cattle belonging to the affected herd. The mutant allele was absent in a representative sample of unrelated sires of the German Charolais population. CONCLUSION This is the first time in which a recessively inherited ITGB4 associated EBJ has been reported in cattle. The identification of heterozygous carriers is of importance in avoiding the transmission of this defect in future. Current DNA sequencing methods offer a powerful tool for understanding the genetic background of rare diseases in domestic animals having a reference genome sequence available.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Next-generation DNA sequencing platforms can effectively detect the entire spectrum of genomic variation and is emerging to be a major tool for systematic exploration of the universe of variants and interactions in the entire genome. However, the data produced by next-generation sequencing technologies will suffer from three basic problems: sequence errors, assembly errors, and missing data. Current statistical methods for genetic analysis are well suited for detecting the association of common variants, but are less suitable to rare variants. This raises great challenge for sequence-based genetic studies of complex diseases.^ This research dissertation utilized genome continuum model as a general principle, and stochastic calculus and functional data analysis as tools for developing novel and powerful statistical methods for next generation of association studies of both qualitative and quantitative traits in the context of sequencing data, which finally lead to shifting the paradigm of association analysis from the current locus-by-locus analysis to collectively analyzing genome regions.^ In this project, the functional principal component (FPC) methods coupled with high-dimensional data reduction techniques will be used to develop novel and powerful methods for testing the associations of the entire spectrum of genetic variation within a segment of genome or a gene regardless of whether the variants are common or rare.^ The classical quantitative genetics suffer from high type I error rates and low power for rare variants. To overcome these limitations for resequencing data, this project used functional linear models with scalar response to develop statistics for identifying quantitative trait loci (QTLs) for both common and rare variants. To illustrate their applications, the functional linear models were applied to five quantitative traits in Framingham heart studies. ^ This project proposed a novel concept of gene-gene co-association in which a gene or a genomic region is taken as a unit of association analysis and used stochastic calculus to develop a unified framework for testing the association of multiple genes or genomic regions for both common and rare alleles. The proposed methods were applied to gene-gene co-association analysis of psoriasis in two independent GWAS datasets which led to discovery of networks significantly associated with psoriasis.^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

My dissertation focuses on two aspects of RNA sequencing technology. The first is the methodology for modeling the overdispersion inherent in RNA-seq data for differential expression analysis. This aspect is addressed in three sections. The second aspect is the application of RNA-seq data to identify the CpG island methylator phenotype (CIMP) by integrating datasets of mRNA expression level and DNA methylation status. Section 1: The cost of DNA sequencing has reduced dramatically in the past decade. Consequently, genomic research increasingly depends on sequencing technology. However it remains elusive how the sequencing capacity influences the accuracy of mRNA expression measurement. We observe that accuracy improves along with the increasing sequencing depth. To model the overdispersion, we use the beta-binomial distribution with a new parameter indicating the dependency between overdispersion and sequencing depth. Our modified beta-binomial model performs better than the binomial or the pure beta-binomial model with a lower false discovery rate. Section 2: Although a number of methods have been proposed in order to accurately analyze differential RNA expression on the gene level, modeling on the base pair level is required. Here, we find that the overdispersion rate decreases as the sequencing depth increases on the base pair level. Also, we propose four models and compare them with each other. As expected, our beta binomial model with a dynamic overdispersion rate is shown to be superior. Section 3: We investigate biases in RNA-seq by exploring the measurement of the external control, spike-in RNA. This study is based on two datasets with spike-in controls obtained from a recent study. We observe an undiscovered bias in the measurement of the spike-in transcripts that arises from the influence of the sample transcripts in RNA-seq. Also, we find that this influence is related to the local sequence of the random hexamer that is used in priming. We suggest a model of the inequality between samples and to correct this type of bias. Section 4: The expression of a gene can be turned off when its promoter is highly methylated. Several studies have reported that a clear threshold effect exists in gene silencing that is mediated by DNA methylation. It is reasonable to assume the thresholds are specific for each gene. It is also intriguing to investigate genes that are largely controlled by DNA methylation. These genes are called “L-shaped” genes. We develop a method to determine the DNA methylation threshold and identify a new CIMP of BRCA. In conclusion, we provide a detailed understanding of the relationship between the overdispersion rate and sequencing depth. And we reveal a new bias in RNA-seq and provide a detailed understanding of the relationship between this new bias and the local sequence. Also we develop a powerful method to dichotomize methylation status and consequently we identify a new CIMP of breast cancer with a distinct classification of molecular characteristics and clinical features.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A loxP-transposon retrofitting strategy for generating large nested deletions from one end of the insert DNA in bacterial artificial chromosomes and P1 artificial chromosomes was described recently [Chatterjee, P. K. & Coren, J. S. (1997) Nucleic Acids Res. 25, 2205–2212]. In this report, we combine this procedure with direct sequencing of nested-deletion templates by using primers located in the transposon end to illustrate its value for position-specific single-nucleotide polymorphism (SNP) discovery from chosen regions of large insert clones. A simple ampicillin sensitivity screen was developed to facilitate identification and recovery of deletion clones free of transduced transposon plasmid. This directed approach requires minimal DNA sequencing, and no in vitro subclone library generation; positionally oriented SNPs are a consequence of the method. The procedure is used to discover new SNPs as well as physically map those identified from random subcloned libraries or sequence databases. The deletion templates, positioned SNPs, and markers are also used to orient large insert clones into a contig. The deletion clone can serve as a ready resource for future functional genomic studies because each carries a mammalian cell-specific antibiotic resistance gene from the transposon. Furthermore, the technique should be especially applicable to the analysis of genomes for which a full genome sequence or radiation hybrid cell lines are unavailable.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We describe a fluorescence-based directed termination PCR (fluorescent DT–PCR) that allows accurate determination of actual sequence changes without dideoxy DNA sequencing. This is achieved using near infrared dye-labeled primers and performing two PCR reactions under low and unbalanced dNTP concentrations. Visualization of resulting termination fragments is accomplished with a dual dye Li-cor DNA sequencer. As each DT–PCR reaction generates two sets of terminating fragments, a pair of complementary reactions with limiting dATP and dCTP collectively provide information on the entire sequence of a target DNA, allowing an accurate determination of any base change. Blind analysis of 78 mutants of the supF reporter gene using fluorescent DT–PCR not only correctly determined the nature and position of all types of substitution mutations in the supF gene, but also allowed rapid scanning of the signature sequences among identical mutations. The method provides simplicity in the generation of terminating fragments and 100% accuracy in mutation characterization. Fluorescent DT–PCR was successfully used to generate a UV-induced spectrum of mutations in the supF gene following replication on a single plate of human DNA repair-deficient cells. We anticipate that the automated DT–PCR method will serve as a cost-effective alternative to dideoxy sequencing in studies involving large-scale analysis for nucleotide sequence changes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A spontaneous mutator strain of Escherichia coli (fpg mutY) was used to clone the OGG1 gene of Saccharomyces cerevisiae, which encodes a DNA glycosylase activity that excises 7,8-dihydro-8-oxoguanine (8-OxoG). E. coli (fpg mutY) was transformed by a yeast DNA library, and clones that showed a reduced spontaneous mutagenesis were selected. The antimutator activity was associated with pYSB10, an 11-kbp recombinant plasmid. Cell-free extracts of E. coli (fpg mutY) harboring pYSB10 possess an enzymatic activity that cleaves a 34-mer oligonucleotide containing a single 8-oxoG opposite a cytosine (8-OxoG/C). The yeast DNA fragment of 1.7 kbp that suppresses spontaneous mutagenesis and overproduces the 8-OxoG/C cleavage activity was sequenced and mapped to chromosome XIII. DNA sequencing identified an open reading frame, designated OGG1, which encodes a protein of 376 amino acids with a molecular mass of 43 kDa. The OGG1 gene was inserted in plasmid pUC19, yielding pYSB110. E. coli (fpg) harboring pYSB110 was used to purify the Ogg1 protein of S. cerevisiae to apparent homogeneity. The Ogg1 protein possesses a DNA glycosylase activity that releases 8-OxoG and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. The Ogg1 protein preferentially incises DNA that contains 8-OxoG opposite cytosine (8-OxoG/C) or thymine (8-OxoG/T). In contrast, Ogg1 protein does not incise the duplex where an adenine is placed opposite 8-OxoG (8-OxoG/A). The mechanism of strand cleavage by Ogg1 protein is probably due to the excision of 8-OxoG followed by a beta-elimination at the resulting apurinic/apyrimidinic site.