361 resultados para DLR de Raf


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinase suppressor of Ras (KSR) is an evolutionarily conserved component of Ras-dependent signaling pathways. Here, we find that murine KSR (mKSR1) translocates from the cytoplasm to the plasma membrane in the presence of activated Ras. At the membrane, mKSR1 modulates Ras signaling by enhancing Raf-1 activity in a kinase-independent manner. The activation of Raf-1 is mediated by the mKSR1 cysteine-rich CA3 domain and involves a detergent labile cofactor that is not ceramide. These findings reveal another point of regulation for Ras-mediated signal transduction and further define a noncatalytic role for mKSR1 in the multistep process of Raf-1 activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapid modulation of ligand-binding affinity (“activation”) is a central property of the integrin family of cell adhesion receptors. The small GTP-binding protein Ras and its downstream effector kinase Raf-1 suppress integrin activation. In this study we explored the relationship between Ras and the closely related small GTP-binding protein R-Ras in modulating the integrin affinity state. We found that R-Ras does not seem to be a direct activator of integrins in Chinese hamster ovary cells. However, we observed that GTP-bound R-Ras strongly antagonizes the Ras/Raf-initiated integrin suppression pathway. Furthermore, this reversal of the Ras/Raf suppressor pathway does not seem to be via a competition between Ras and R-Ras for common downstream effectors or via an inhibition of Ras/Raf-induced MAP kinase activation. Thus, R-Ras and Ras may act in concert to regulate integrin affinity via the activation of distinct downstream effectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the mechanism of action responsible for the in vivo antitumor activity of a phosphorothioate antisense inhibitor targeted against human C-raf kinase (ISIS 5132, also known as CGP69846A), a series of mismatched phosphorothioate analogs of ISIS 5132 or CGP69846A were synthesized and characterized with respect to hybridization affinity, inhibitory effects on C-raf gene expression in vitro, and antitumor activity in vivo. Incorporation of a single mismatch into the sequence of ISIS 5132 or CGP69846A resulted in reduced hybridization affinity toward C-raf RNA sequences and reduced inhibitory activity against C-raf expression in vitro and tumor growth in vivo. Moreover, incorporation of additional mismatches resulted in further loss of in vitro and in vivo activity in a manner that correlated well with a hybridization-based (i.e., antisense) mechanism of action. These results provide important experimental evidence supporting an antisense mechanism of action underlying the in vivo antitumor activity displayed by ISIS 5132 or CGP69846A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The p53 tumor suppressor gene can inhibit proliferation transiently, induce permanent cell-cycle arrest/senescence, or cause apoptosis depending on the cellular context. The mitogen-activated protein kinase (MAPK) cascade is known to play a crucial role in cell proliferation and differentiation. Moreover, the duration and intensity of MAPK activation can profoundly influence the biological response observed. We demonstrated that a sustained activation of MAPK cascade could be induced by wild-type p53 expression but not by p21Waf1/Cip1. Furthermore, exposure of normal cells to DNA-damaging agents induced MAPK activation in a p53-dependent manner. Tumor-derived p53 mutants defective in DNA binding failed to activate MAPK, implying that p53 transcriptional activity is essential for this function. Finally, activation of MAPK by p53 was inhibited by expression of dominant-negative Ras (N17Ras) and Raf1 mutants, indicating that MAPK activation by p53 is mediated at a level upstream of Ras. All of these findings establish a biochemical link between p53 signaling and the Ras/Raf/MAPK cascade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

D-raf, a Drosophila homolog of the raf proto-oncogene, has diverse functions throughout development and is transcribed in a wide range of tissues, with high levels of expression in the ovary and in association with rapid proliferation. The expression pattern resembles those of S phase genes, which are regulated by E2F transcription factors. In the 5′-flanking region of D-raf, four sequences (E2F sites 1–4) similar to the E2F recognition sequence were found, one of them (E2F site 3) being recognized efficiently by Drosophila E2F (dE2F) in vitro. Transient luciferase expression assays confirmed activation of the D-raf gene promoter by dE2F/dDP. Expression of Draf–lacZ was greatly reduced in embryos homozygous for the dE2F mutation. These results suggest that dE2F is likely to be an important regulator of D-raf transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transformation of normal cloned rat embryo fibroblast (CREF) cells with cellular oncogenes results in acquisition of anchorage-independent growth and oncogenic potential in nude mice. These cellular changes correlate with an induction in the expression of a cancer progression-promoting gene, progression elevated gene-3 (PEG-3). To define the mechanism of activation of PEG-3 as a function of transformation by the Ha-ras and v-raf oncogenes, evaluations of the signaling and transcriptional regulation of the ~2.0 kb promoter region of the PEG-3 gene, PEG-Prom, was undertaken. The full-length and various mutated regions of the PEG-Prom were linked to a luciferase reporter construct and tested for promoter activity in CREF and oncogene-transformed CREF cells. An analysis was also performed using CREF cells doubly transformed with Ha-ras and the Ha-ras specific suppressor gene Krev-1, which inhibits the transformed phenotype in vitro. These assays document an association between expression of the transcription regulator PEA3 and PEG-3. The levels of PEA3 and PEG-3 RNA and proteins are elevated in the oncogenically transformed CREF cells, and reduced in transformation and tumorigenic suppressed Ha-ras/Krev-1 doubly transformed CREF cells. Enhanced tumorigenic behavior, PEG-3 promoter function and PEG-3 expression in Ha-ras transformed cells were all dependent upon increased activity within the mitogen-activated protein kinase (MAPK) pathway. Electrophoretic mobility shift assays and DNase I footprinting experiments indicate that PEA3 binds to sites within the PEG-Prom in transformed rodent cells in an area adjacent to the TATA box in a MAPK-dependent fashion. These findings demonstrate an association between Ha-ras and v-raf transformation of CREF cells with elevated PEA3 and PEG-3 expression, and they implicate MAPK signaling via PEA3 as a signaling cascade involved in activation of the PEG-Prom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ser/Thr kinase Raf-1 is a protooncogene product that is a central component in many signaling pathways involved in normal cell growth and oncogenic transformation. Upon activation, Raf-1 phosphorylates mitogen-activated protein kinase kinase (MEK), which in turn activates mitogen-activated protein kinase/extracellular signal-regulated kinases (MAPK/ERKs), leading to the propagation of signals. Depending on specific stimuli and cellular environment, the Raf-1–MEK–ERK cascade regulates diverse cellular processes such as proliferation, differentiation, and apoptosis. Here, we describe a MEK–ERK-independent prosurvival function of Raf-1. We found that Raf-1 interacts with the proapoptotic, stress-activated protein kinase ASK1 (apoptosis signal-regulating kinase 1) in vitro and in vivo. Deletion analysis localized the Raf-1 binding site to the N-terminal regulatory fragment of ASK1. This interaction allows Raf-1 to act independently of the MEK–ERK pathway to inhibit apoptosis. Furthermore, catalytically inactive forms of Raf-1 can mimic the wild-type effect, raising the possibility of a kinase-independent function of Raf-1. Thus, Raf-1 may promote cell survival through its protein–protein interactions in addition to its established MEK kinase function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

JAK2, a member of the Janus kinase superfamily was found to interact functionally with Raf-1, a central component of the ras/mitogen-activated protein kinase signal transduction pathway. Interferon-gamma and several other cytokines that are known to activate JAK2 kinase were also found to stimulate Raf-1 kinase activity toward MEK-1 in mammalian cells. In the baculovirus coexpression system, Raf-1 was activated by JAK2 in the presence of p21ras. Under these conditions, a ternary complex of p21ras, JAK2, and Raf-1 was observed. In contrast, in the absence of p21ras, coexpression of JAK2 and Raf-1 resulted in an overall decrease in the Raf-1 kinase activity. In addition, JAK2 phosphorylated Raf-1 at sites different from those phosphorylated by pp60v-src. In mammalian cells treated with either erythropoietin or interferon-gamma, a small fraction of Raf-1 coimmunoprecipitated with JAK2 in lysates of cells in which JAK2 was activated as judged by its state of tyrosine phosphorylation. Taken together, these data suggest that JAK2 and p21ras cooperate to activate Raf-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Raf-1 protein kinase is the best-characterized downstream effector of activated Ras. Interaction with Ras leads to Raf-1 activation and results in transduction of cell growth and differentiation signals. The details of Raf-1 activation are unclear, but our characterization of a second Ras-binding site in the cysteine-rich domain (CRD) and the involvement of both Ras-binding sites in effective Raf-1-mediated transformation provides insight into the molecular aspects and consequences of Ras-Raf interactions. The Raf-1 CRD is a member of an emerging family of domains, many of which are found within signal transducing proteins. Several contain binding sites for diacylglycerol (or phorbol esters) and phosphatidylserine and are believed to play a role in membrane translocation and enzyme activation. The CRD from Raf-1 does not bind diacylglycerol but interacts with Ras and phosphatidylserine. To investigate the ligand-binding specificities associated with CRDs, we have determined the solution structure of the Raf-1 CRD using heteronuclear multidimensional NMR. We show that there are differences between this structure and the structures of two related domains from protein kinase C (PKC). The differences are confined to regions of the CRDs involved in binding phorbol ester in the PKC domains. Since phosphatidylserine is a common ligand, we expect its binding site to be located in regions where the structures of the Raf-1 and PKC domains are similar. The structure of the Raf-1 CRD represents an example of this family of domains that does not bind diacylglycerol and provides a framework for investigating its interactions with other molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The host range of retroviral oncogenes is naturally limited by the host range of the retroviral vector. The question of whether the transforming host range of retroviral oncogenes is also restricted by the host species has not been directly addressed. Here we have tested in avian and murine host species the transforming host range of two retroviral onc genes, myc of avian carcinoma viruses MH2 and MC29 and mht/raf of avian carcinoma virus MH2 and murine sarcoma virus MSV 3611. Virus vector-mediated host restriction was bypassed by recombining viral oncogenes with retroviral vectors that can readily infect the host to be tested. It was found that, despite high expression, transforming function of retroviral myc genes is restricted to avian cells, and that of retroviral mht/raf genes is restricted to murine cells. Since retroviral oncogenes encode the same proteins as certain cellular genes, termed protooncogenes, our data must also be relevant to the oncogene hypothesis of cancer. According to this hypothesis, cancer is caused by mutation of protooncogenes. Because protooncogenes are conserved in evolution and are presumed to have conserved functions, the oncogene hypothesis assumes no host range restriction of transforming function. For example, mutated human proto-myc is postulated to cause Burkitt lymphoma, because avian retroviruses with myc genes cause cancer in birds. But there is no evidence that known mutated protooncogenes can transform human cells. The findings reported here indicate that host range restriction appears to be one of the reasons (in addition to insufficient transcriptional activation) why known, mutated protooncogenes lack transforming function in human cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potent transforming activity of membrane-targeted Raf-1 (Raf-CAAX) suggests that Ras transformation is triggered primarily by a Ras-mediated translocation of Raf-1 to the plasma membrane. However, whereas constitutively activated mutants of Ras [H-Ras(61L) and K-Ras4B(12V)] and Raf-1 (DeltaRaf-22W and Raf-CAAX) caused indistinguishable morphologic and growth (in soft agar and nude mice) transformation of NIH 3T3 fibroblasts, only mutant Ras caused morphologic transformation of RIE-1 rat intestinal cells. Furthermore, only mutant Ras-expressing RIE-1 cells formed colonies in soft agar and developed rapid and progressive tumors in nude mice. We also observed that activated Ras, but not Raf-1, caused transformation of IEC-6 rat intestinal and MCF-10A human mammary epithelial cells. Although both Ras- and DeltaRaf-22W-expressing RIE-1 cells showed elevated Raf-1 and mitogen-activated protein (MAP) kinase activities, only Ras-transformed cells produced secreted factors that promoted RIE-1 transformation. Incubation of untransformed RIE-1 cells in the presence of conditioned medium from Ras-expressing, but not DeltaRaf-22W-expressing, cells caused a rapid and stable morphologic transformation that was indistinguishable from the morphology of Ras-transformed RIE-1 cells. Thus, induction of an autocrine growth mechanism may distinguish the transforming actions of Ras and Raf. In summary, our observations demonstrate that oncogenic Ras activation of the Raf/MAP kinase pathway alone is not sufficient for full tumorigenic transformation of RIE-1 epithelial cells. Thus, Raf-independent signaling events are essential for oncogenic Ras transformation of epithelial cells, but not fibroblasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin 1 is the prototype of an inflammatory cytokine, and evidence suggests that it uses the sphingomyelin pathway and ceramide production to trigger mitogen-activated protein kinase (MAPK) activation and subsequent gene expression required for acute inflammatory processes. To identify downstream signaling targets of ceramide, a radioiodinated photoaffinity labeling analog of ceramide ([125I] 3-trifluoromethyl-3-(m-iodophenyl)diazirine-ceramide) was employed. It is observed that ceramide specifically binds to and activates protein kinase c-Raf, leading to a subsequent activation of the MAPK cascade. Ceramide does not bind to any other member of the MAPK module nor does it bind to protein kinase C-zeta. These data identify protein kinase c-Raf as a specific molecular target for interleukin 1 beta-stimulated ceramide formation and demonstrate that ceramide is a lipid cofactor participating in regulation of c-Raf activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bcl-2 protein blocks programmed cell death (apoptosis) through an unknown mechanism. Previously we identified a Bcl-2 interacting protein BAG-1 that enhances the anti-apoptotic effects of Bcl-2. Like BAG-1, the serine/threonine protein kinase Raf-1 also can functionally cooperate with Bcl-2 in suppressing apoptosis. Here we show that Raf-1 and BAG-1 specifically interact in vitro and in yeast two-hybrid assays. Raf-1 and BAG-1 can also be coimmunoprecipitated from mammalian cells and from insect cells infected with recombinant baculoviruses encoding these proteins. Furthermore, bacterially-produced BAG-1 protein can increase the kinase activity of Raf-1 in vitro. BAG-1 also activates this mammalian kinase in yeast. These observations suggest that the Bcl-2 binding protein BAG-1 joins Ras and 14-3-3 proteins as potential activators of the kinase Raf-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key event in Ras-mediated signal transduction and transformation involves Ras interaction with its downstream effector targets. Although substantial evidence has established that the Raf-1 serine/threonine kinase is a critical effector of Ras function, there is increasing evidence that Ras function is mediated through interaction with multiple effectors to trigger Raf-independent signaling pathways. In addition to the two Ras GTPase activating proteins (GAPs; p120- and NF1-GAP), other candidate effectors include activators of the Ras-related Ral proteins (RalGDS and RGL) and phosphatidylinositol 3-kinase. Interaction between Ras and its effectors requires an intact Ras effector domain and involves preferential recognition of active Ras-GTP. Surprisingly, these functionally diverse effectors lack significant sequence homology and no consensus Ras binding sequence has been described. We have now identified a consensus Ras binding sequence shared among a subset of Ras effectors. We have also shown that peptides containing this sequence from Raf-1 (RKTFLKLA) and NF1-GAP (RRFFLDIA) block NF1-GAP stimulation of Ras GTPase activity and Ras-mediated activation of mitogen-activated protein kinases. In summary, the identification of a consensus Ras-GTP binding sequence establishes a structural basis for the ability of diverse effector proteins to interact with Ras-GTP. Furthermore, our demonstration that peptides that contain Ras-GTP binding sequences can block Ras function provides a step toward the development of anti-Ras agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously, we elucidated the role of bone morphogenetic protein 4 (BMP-4) in the dorsal-ventral patterning of the Xenopus embryo by using a dominant negative mutant of the BMP-4 receptor (DN-BR). The present paper describes the involvement of Ras, Raf, and activator protein 1 (AP-1) in BMP-4 signaling during Xenopus embryonic development. The AP-1 activity was determined by injecting an AP-1-dependent luciferase reporter gene into two-cell-stage Xenopus embryos and measuring the luciferase activity at various developmental stages. We found that injection of BMP-4 mRNA increased AP-1 activity, whereas injection of DN-BR mRNA inhibited AP-1 activity. Similar inhibitory effects were seen with injection of mRNAs encoding dominant negative mutants of c-Ha-Ras, c-Raf, or c-Jun. These results suggest that the endogenous AP-1 activity is regulated by BMP-4/Ras/Raf/Jun signals. We next investigated the effects of Ras/Raf/AP-1 signals on the biological functions of BMP-4. DN-BR-induced dorsalization of the embryo, revealed by the formation of a secondary body axis or dorsalization of the ventral mesoderm explant analyzed by histological and molecular criteria, was significantly reversed by coinjection of [Val12]Ha-Ras, c-Raf, or c-Jun mRNA. Furthermore, the BMP-4-stimulated erythroid differentiation in the ventral mesoderm was substantially inhibited by coinjection with the dominant negative c-Ha-Ras, c-Raf, or c-Jun mutant. Our results suggest the involvement of Ras/Raf/AP-1 in the BMP-4 signaling pathway.