958 resultados para DIVALENT-CATIONS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A group of coenocytic marine algae differs from higher plants, whose totipotency depends on an intact cell (or protoplast). Instead, this alga is able to aggregate its extruded protoplasm in sea water and generate new mature individuals. It is thought that lectins play a key role in the aggregation process. We purified a lectin associated with the aggregation of cell organelles in Bryopsis hypnoides. The lectin was ca. 27 kDa with a pI between pH 5 and pH 6. The absence of carbohydrate suggested that the lectin was not a glycoprotein. The hemagglutinating activity (HA) of the lectin was not dependent on the. presence of divalent cations and was inhibited by N-Acetylgalactosamine, N-Acetylglucosamine, and the glycoprotein bovine submaxillary mucin. The lectin preferentially agglutinated Gram-negative bacterium. The HA of this lectin was stable between pH 4 to pH 10. Cell organelles outside the cytoplasm were agglutinated by the addition of lectin solution (0.5 mg ml(-1)). Our results suggest that the regeneration of B. hypnoides is mediated by this lectin. We also demonstrated that the formation of cell organelle aggregates was inhibited by nigericin in natural seawater (pH 8.0). Given that nigericin dissipates proton gradients across the membrane, we hypothesize that the aggregation of cell organelles was proton-gradient dependent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, hemolytic activity of venom from the jellyfish Rhopilema esculentum Kishinouye and some factors affecting it were assayed. The HU50 of R. esculentum full venom (RFV) against chicken erythrocytes was 3.40 mu g/ml and a Hill coefficient value was 1.73 suggesting at least two molecules participated in hemolytic activity. The hemolytic activity of RFV was affected by some chemical and physical factors such as divalent cations, EDTA, (NH4)(2)SO4, pH and temperature. In the presence of Mg2+, Cu2+, Zn2+, Fe2+, Ca2+ ( >= 2 mM), Mn2+ (>= 1 mM), EDTA (>= 2 mM) and (NH4)(2)SO4, the hemolytic activity of RFV was reduced. RFV had strong hemolytic activity at the pH 6-10 and the hemolytic ratios were 0.95-1.19. Hemolytic activity was temperature-sensitive and when RFV was pre-incubated at temperatures over 40 degrees C, it was sharply reduced. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electric field mediated gene delivery or electrotransfection is a widely used method in various studies ranging from basic cell biology research to clinical gene therapy. Yet, mechanisms of electrotransfection are still controversial. To this end, we investigated the dependence of electrotransfection efficiency (eTE) on binding of plasmid DNA (pDNA) to plasma membrane and how treatment of cells with three endocytic inhibitors (chlorpromazine, genistein, dynasore) or silencing of dynamin expression with specific, small interfering RNA (siRNA) would affect the eTE. Our data demonstrated that the presence of divalent cations (Ca(2+) and Mg(2+)) in electrotransfection buffer enhanced pDNA adsorption to cell membrane and consequently, this enhanced adsorption led to an increase in eTE, up to a certain threshold concentration for each cation. Trypsin treatment of cells at 10 min post electrotransfection stripped off membrane-bound pDNA and resulted in a significant reduction in eTE, indicating that the time period for complete cellular uptake of pDNA (between 10 and 40 min) far exceeded the lifetime of electric field-induced transient pores (∼10 msec) in the cell membrane. Furthermore, treatment of cells with the siRNA and all three pharmacological inhibitors yielded substantial and statistically significant reductions in the eTE. These findings suggest that electrotransfection depends on two mechanisms: (i) binding of pDNA to cell membrane and (ii) endocytosis of membrane-bound pDNA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nidoviruses (arteriviruses, coronaviruses, and roniviruses) are a phylogenetically compact but diverse group of positive-strand RNA viruses that includes important human and animal pathogens. Nidovirus RNA synthesis is mediated by a cytoplasmic membrane-associated replication/transcription complex that includes up to 16 viral nonstructural proteins (nsps), which carry common enzymatic activities, like the viral RNA polymerase, but also unusual and poorly understood RNA-processing functions. Of these, a conserved endoribonuclease (NendoU) is a major genetic marker that is unique to nidoviruses. NendoU activity was previously verified in vitro for the coronavirus nsp15, but not for any of its distantly related orthologs from other nidovirus lineages, like the arterivirus nsp11. Here, we show that the bacterially expressed nsp11 proteins of two arteriviruses, equine arteritis virus and porcine respiratory and reproductive syndrome virus, possess pyrimidine-specific endoribonuclease activity. RNA cleavage was independent of divalent cations in vitro and was greatly reduced by replacement of residues previously implicated in catalysis. Comparative characterization of the NendoU activity in arteriviruses and severe acute respiratory syndrome coronavirus revealed common and distinct features of their substrate requirements and reaction mechanism. Our data provide the first biochemical evidence of endoribonuclease activity associated with arterivirus nsp11 and support the conclusion that this remarkable RNA-processing enzyme, whose substrate in the infected cell remains to be identified, distinguishes nidoviruses from all other RNA viruses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The treatment of infections caused by bacteria resistant to the vast majority of antibiotics is a challenge worldwide. Antimicrobial peptides (APs) make up the front line of defense in those areas exposed to microorganisms, and there is intensive research to explore their use as new antibacterial agents. On the other hand, it is known that subinhibitory concentrations of antibiotics affect the expression of numerous bacterial traits. In this work we evaluated whether treatment of bacteria with subinhibitory concentrations of quinolones may alter the sensitivity to APs. A 1-h treatment of Klebsiella pneumoniae with 0.25 x the MIC of ciprofloxacin rendered bacteria more sensitive to polymyxins B and E, human neutrophil defensin 1, and beta-defensin 1. Levofloxacin and nalidixic acid at 0.25 x the MICs also increased the sensitivity of K. pneumoniae to polymyxin B, whereas gentamicin and ceftazidime at 0.25 x the MICs did not have such an effect. Ciprofloxacin also increased the sensitivities of K. pneumoniae ciprofloxacin-resistant strains to polymyxin B. Two other pathogens, Pseudomonas aeruginosa and Haemophilus influenzae, also became more sensitive to polymyxins B and E after treatment with 0.25 x the MIC of ciprofloxacin. Incubation with ciprofloxacin did not alter the expression of the K. pneumoniae loci involved in resistance to APs. A 1-N-phenyl-naphthylamine assay showed that ciprofloxacin and levofloxacin increased the permeabilities of the K. pneumoniae and P. aeruginosa outer membranes, while divalent cations antagonized this action. Finally, we demonstrated that ciprofloxacin and levofloxacin increased the binding of APs to the outer membrane by using dansylated polymyxin B.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidation of NADH in the mitochondrial matrix of aerobic cells is catalysed by mitochondrial complex I. The regulation of this mitochondrial enzyme is not completely understood. An interesting characteristic of complex I from some organisms is the ability to adopt two distinct states: the so-called catalytically active (A) and the de-active, dormant state (D). The A-form in situ can undergo de-activation when the activity of the respiratory chain is limited (i.e. in the absence of oxygen). The mechanisms and driving force behind the A/D transition of the enzyme are currently unknown, but several subunits are most likely involved in the conformational rearrangements: the accessory subunit 39 kDa (NDUFA9) and the mitochondrially encoded subunits, ND3 and ND1. These three subunits are located in the region of the quinone binding site. The A/D transition could represent an intrinsic mechanism which provides a fast response of the mitochondrial respiratory chain to oxygen deprivation. The physiological role of the accumulation of the D-form in anoxia is most probably to protect mitochondria from ROS generation due to the rapid burst of respiration following reoxygenation. The de-activation rate varies in different tissues and can be modulated by the temperature, the presence of free fatty acids and divalent cations, the NAD/NADH ratio in the matrix, the presence of nitric oxide and oxygen availability. Cysteine-39 of the ND3 subunit, exposed in the D-form, is susceptible to covalent modification by nitrosothiols, ROS and RNS. The D-form in situ could react with natural effectors in mitochondria or with pharmacological agents. Therefore the modulation of the re-activation rate of complex I could be a way to ameliorate the ischaemia/reperfusion damage. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eukaryotes contain inorganic polyphosphate (polyP) and acidocalcisomes, which sequester polyP and store amino acids and divalent cations. Why polyP is sequestered in dedicated organelles is not known. We show that polyP produced in the cytosol of yeast becomes toxic. Reconstitution of polyP translocation with purified vacuoles, the acidocalcisomes of yeast, shows that cytosolic polyP cannot be imported, whereas polyP produced by the vacuolar transporter chaperone (VTC) complex, an endogenous vacuolar polyP polymerase, is efficiently imported and does not interfere with growth. PolyP synthesis and import require an electrochemical gradient, probably as a driving force for polyP translocation. VTC exposes its catalytic domain to the cytosol and carries nine vacuolar transmembrane domains. Mutations in the VTC transmembrane regions, which are likely to constitute the translocation channel, block not only polyP translocation but also synthesis. Given that they are far from the cytosolic catalytic domain of VTC, this suggests that the VTC complex obligatorily couples synthesis of polyP to its import in order to avoid toxic intermediates in the cytosol. Sequestration of otherwise toxic polyP might be one reason for the existence of acidocalcisomes in eukaryotes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thy-1 is an abundant neuronal glycoprotein of poorly defined function. We recently provided evidence indicating that Thy-1 clusters a beta3-containing integrin in astrocytes to induce tyrosine phosphorylation, RhoA activation and the formation of focal adhesions and stress fibers. To date, the alpha subunit partner of beta3 integrin in DI TNC1 astrocytes is unknown. Similarly, the ability of neuronal, membrane-bound Thy-1 to trigger astrocyte signaling via integrin engagement remains speculation. Here, evidence that alphav forms an alphavbeta3 heterodimer in DI TNC1 astrocytes was obtained. In neuron-astrocyte association assays, the presence of either anti-alphav or anti-beta3 integrin antibodies reduced cell-cell interaction demonstrating the requirement of both integrin subunits for this association. Moreover, anti-Thy-1 antibodies blocked stimulation of astrocytes by neurons but not the binding of these two cell types. Thus, neuron-astrocyte association involved binding between molecular components in addition to the Thy-1-integrin; however, the signaling events leading to focal adhesion formation in astrocytes depended exclusively on the latter interaction. Additionally, wild-type (RLD) but not mutated (RLE) Thy-1 was shown to directly interact with alphavbeta3 integrin by Surface Plasmon Resonance analysis. This interaction was promoted by divalent cations and was species-independent. Together, these results demonstrate that the alphavbeta3 integrin heterodimer interacts directly with Thy-1 present on neuronal cells to stimulate astrocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La diarrhée post-sevrage est une maladie d’importance dans l’industrie porcine et est principalement causée Escherichia coli O149. Le traitement habituellement utilisé est la néomycine. Cependant, en raison de l’antibiorésistance, les vétérinaires se tournent vers la colistine sulfate (CS). La CS lie les lipopolysaccharides (LPS) et provoque un déplacement des cations divalents causant la formation de pores entrainant la mort cellulaire. Le système à deux composantes PmrA/PmrB est le plus incriminé dans la résistance à la colistine en ajoutant un groupement 4-amino-4-déoxy-L-arabinose (L-Ara4N) au lipide A des LPS, augmentant ainsi la charge du LPS et diminuant son affinité pour la CS. L’objectif principal est d’évaluer l’acquisition de la résistance à la CS d’E. coli in vitro et dans un modèle in vivo. Nous avons utilisé des souches associées à des cas cliniques d’E. coli O149 et avons créé 22 mutants résistants à la CS. La concentration minimale inhibitrice (CMI) a été mesurée par une méthode de double dilution et comparée au seuil de résistance. Suite au séquençage des gènes pmrA/pmrB, nous avons identifié sept nouveaux polymorphismes, trois dans PmrA : A80V, N128I, S144G et quatre dans PmrB : V87E, D148Y, D148V et T156M. Pour l’essai in vivo, nous avons suivi une souche expérimentale ETEC:F4 (E. coli O149) et isolé des E. coli de la flore commensale. Le séquençage des gènes pmrA et pmrB de ces isolats a montré un polymorphisme spécifique, G15R et T156M respectivement. Cependant, plusieurs souches récoltées possédaient une résistance à la CS, mais sans polymorphisme de PmrA/PmrB, suggérant d’autre(s) mécanisme(s) de résistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Progesterone-receptor complex from freshly prepared hen oviduct cytosol acquired the ability to bind to isolated nuclei, DNA-cellulose and ATP-Sepharose when incubated with 5-10 mM ATP at 4°C. The extent of this ATP-dependent activation was higher when compared with heat-activation achieved by warming the progesterone- receptor complex at 23 °C. The transformation of progesterone-receptor complex which occurred in a time-dependent manner was only partially dependent on hormone presence. The ATP effect was selective in causing this transformation whereas ADP, AMP and cAMP failed to show any such effect. The non-hydrolizable analogs of ATP, adenosine 5'-[a,/3-methylene]triphosphate and adenosine 5-[/l,y-imido]triphosphate were also found to be ineffective. Presence of 10 mM sodium molybdate blocked both the ATP and the heat-activation of progesterone-receptor complex. Mn" or Mg` had no detectable effect on the receptor activation but the presence of Ca" increased the extent of ATP-activation slightly. EDTA presence (> 5 mM) decreased the extent of receptor activation by about 40 % and was, therefore, not included in the buffers used for activation studies. Divalent cations were also ineffective when tested in the presence of 1- 5 mM EDTA. The properties of progesterone-receptor complex remained intact under the above conditions when analyzed for steroid-binding specificity and Scatchard analysis. However, the ATP-activated progesterone-receptor complex lost the ability to aggregate when tested on low-salt sucrose gradients. ATP was equally effective in activating the rat-uterine estradiol-receptor complex at 4 "C and influenced the transformation of 4-S receptor form into a 5-S form when analyzed on sucrose gradients containing 0.3 M KCI. The presence of ATP also increased the rate of activation of progesterone-receptor complex at 23 °C. These findings suggest a role for ATP in receptor function and offer a convenient method of studying the process of receptor activation at low temperature and mild assay conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The period, known to UK farmers and processors as the "spring flush", when the cows' diet changes from dry feed to spring pasture, has long been established as a time of change in milk properties and processing characteristics. Although it is believed to be a time when problems in processing are most likely to occur (e.g. milk that does not form clots or forms weak gels during cheesemaking), there is little evidence in the literature of detailed changes in milk composition and their impact on product manufacture. In this study, a range of physicochemical properties were analysed in milk collected from five commercial dairy herds before, during and after the spring flush period of 2006. In particular, total and ionic calcium contents of milk were studied in relation to other parameters including rennet clotting, acid gel properties, heat coagulation, alcohol stability, micelle size and zeta potential. Total divalent cations were significantly reduced from 35.4 to 33.4 mmol.L-1 during the study, while ionic calcium was reduced from 1.48 to 1.40 mmol.L-1 over the same period. Many parameters varied significantly between the sample dates. However, there was no evidence to suggest that any of the milk samples would have been unsuitable for processing - e.g. there were no samples that did not form clots with chymosin within a reasonable time or formed especially weak rennet or acid gels. A number of statistically significant correlations were found within the data, including ionic calcium concentration and pH; rennet clotting time (RCT) and micelle diameter; and RCT and ethanol stability. Overall, while there were clear variations in milk composition and properties over this period, there was no evidence to support the view that serious processing problems are likely during the change from dry feed to spring pasture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Addition of divalent cations to a solution of a naphthalene-diphenylalanine that forms worm-like micelles at high pH results in the formation of a rigid, self-supporting hydrogel

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work summarizes results obtained on membranes composed of the ternary mixture dioleoylphosphatidylglycerol (DOPG), egg sphingomyelin (eSM) and cholesterol (Chol). The membrane phase state as a function of composition is characterized from data collected with fluorescence microscopy on giant unilamellar vesicles. The results suggest that the presence of the charged DOPG significantly decreases the composition region of coexistence of liquid ordered and liquid disordered phases as compared to that in the ternary mixture of dioleoylphosphatidycholine, sphingomyelin and cholesterol. The addition of calcium chloride to DOPG:eSM:Chol vesicles, and to a lesser extent the addition of sodium chloride, leads to the stabilization of the two-phase coexistence region, which is expressed in an increase in the miscibility temperature. On the other hand, addition of the chelating agent EDTA has the opposite effect, suggesting that impurities of divalent cations in preparations of giant vesicles contribute to the stabilization of charged domains. We also explore the behavior of these membranes in the presence of extruded unilamellar vesicles made of the positively charged lipid dioleoyltrimethylammoniumpropane (DOTAP). The latter can induce domain formation in DOPG:eSM:Chol vesicles with initial composition in the one-phase region. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ALVES, Ana paula Melo. Vermiculitas tratadas quimicamente na obtenção de sólidos microporosos como precursores para híbridos inorgânico-orgânicos com aplicações adsortivas. 2009. 124 f. Tese (Doutorado em Quimica) - Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, PB, 2009.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A lectin with hemagglutinating activity has been isolated from an aqueous extract of the symbiotic phenotype of Dictyonema glabratum and its cyanobacterial photobiont Scytonema sp. The purified lectin had a pi of 6.8 and its molecular mass was investigated by electrospray ionization mass spectrometry, gel filtration and SDS-PAGE, which indicated its native conformation as a dimer formed by two identical subunits of 16540 Da. The lectin is a glycoprotein with a low degree of glycosylation, containing galactose, xylose, glucose and mannose as neutral monosaccharides, in addition to glucosamine, which could indicate both N- and O-linkages. Amino acid analysis showed the predominance of nonpolar residues such as phenylalanine. Agglutination of human erythrocytes required divalent cations, which is affected by addition of EDTA. The lectin was more stable at 30 degreesC or less for at least 1 h and between pH 5.0 and 7.0. Among the various compounds tested for hemagglutination inhibition, N-acetylgalactosamine was the most active. The potential role of this lectin in recognition of the compatible cyanobacterial photobiont is discussed.