326 resultados para DISAGGREGATED COMETS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surfaces of many objects in the Solar System comprise substantial quantities of water ice sometimes mixed with minerals and/or organic molecules. The sublimation of the ice changes the structural and optical properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surface analogues of cometary ices, made of water ice, complex organic matter (tholins) and silicates, as they undergo sublimation under low temperature (<-70°C) and pressure (10-⁵mbar) conditions inside the SCITEAS simulation chamber. As the water ice sublimated, we observed in situ the formation of a porous sublimation lag deposit, or sublimation mantle, at the top of the ice. This mantle is a network of filaments made of the non-volatile particles. Organics or phyllosilicates grains, able to interact via stronger inter-particulate forces than olivine grains, can form a foam-like structure having internal cohesiveness, holding olivine grains together. As this mantle builds-up, the band depths of the sub-surface water ice are attenuated until complete extinction under only few millimeters of mantle. Optically thick sublimation mantles are mainly featureless in the near infrared. The absorption bands of the minerals present in the mantle are weak, or even totally absent if minerals are mixed with organics which largely dominate the VIS–NIR reflectance spectrum. During sublimation, ejections of large fragments of mantle, triggered by the gas flow, expose ice particles to the surface. The contrast of brightness between mantled and ice-exposed areas depends on the wavelength range and the dust/ice ratio considered. We describe how the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the ice and the dust/ice mass ratio influence the texture, activity and spectro-photometric properties of the sublimation mantles. These data provide useful references for interpreting remote-sensing observations of comets and also icy satellites or trans-neptunian objects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding dynamic conditions in the Solar Nebula is the key to prediction of the material to be found in comets. We suggest that a dynamic, large-scale circulation pattern brings processed dust and gas from the inner nebula back out into the region of cometesimal formation—extending possibly hundreds of astronomical units (AU) from the sun—and that the composition of comets is determined by a chemical reaction network closely coupled to the dynamic transport of dust and gas in the system. This scenario is supported by laboratory studies of Mg silicates and the astronomical data for comets and for protoplanetary disks associated with young stars, which demonstrate that annealing of nebular silicates must occur in conjunction with a large-scale circulation. Mass recycling of dust should have a significant effect on the chemical kinetics of the outer nebula by introducing reduced, gas-phase species produced in the higher temperature and pressure environment of the inner nebula, along with freshly processed grains with “clean” catalytic surfaces to the region of cometesimal formation. Because comets probably form throughout the lifetime of the Solar Nebula and processed (crystalline) grains are not immediately available for incorporation into the first generation of comets, an increasing fraction of dust incorporated into a growing comet should be crystalline olivine and this fraction can serve as a crude chronometer of the relative ages of comets. The formation and evolution of key organic and biogenic molecules in comets are potentially of great consequence to astrobiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliographies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reprint. Originally published: London : s.n., 1871.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research identifies factors which influence the consumption of potable water supplied to customers' property. A complete spectrum of the customer base is examined including household, commercial and industrial properties. The research considers information from around the world, particularly demand management and tariff related projects from North America. A device termed the Flow Moderator was developed and proven, with extensive trials, to conserve water at a rate equivalent to 40 litres/property/day whilst maintaining standards-of-service considerably in excess of Regulatory requirements. A detailed appraisal of the Moderator underlines the costs and benefits available to the industry through deliberate application of even mild demand management. More radically the concept of a charging policy utilising the Moderator is developed and appraised. Advantages include the lower costs of conventional fixed-price charging systems coupled with the conservation and equitability aspects associated with metering. Explanatory models were developed linking consumption to a range of variables demonstrated that households served by a communal water service-pipe (known in the UK as a shared supply) are subject to associated restrictions equivalent to -180 litres/property/day. The research confirmed that occupancy levels were a significant predictive element for household, commercial and industrial customers. The occurrence of on-property leakage was also demonstrated to be a significant factor recorded as an event which offers considerable scope for demand management in its own right.