959 resultados para DIPHENYL- AND TRIMETHYLLEAD(IV)
Resumo:
Four new diorganotin(IV) complexes have been prepared from R(2)SnCl(2) (R = Me, Ph) with the ligands 5-hydroxy-3-metyl-5-phenyl-1-(S-benzildithiocarbazate)-pyrazoline (H(2)L(1)) and 5-hydroxy-3-methyl-5-phenyl-1-(2-thiophenecarboxylic)-pyrazoline (H(2)L(2)). The complexes were characterized by elemental analysis, IR. (1)H (13)C, (119)Sn NMR and Mossbauer spectroscopes The complexes [Me(2)SnL(1)], [Ph(2)SnL(1)] and [Me(2)SnL(2)] were also studied by single crystal X-ray diffraction and the results showed that the Sn(IV) central atom of the complexes adopts a distorted trigonal bipyramidal (TBP) geometry with the N atom of the ONX-tridentate (X = O and S) ligand and two organic groups occupying equatorial sites. The C-Sn-C angles for [Me(2)Sn(L(1))] and [Ph(2)Sn(L(1))] were calculated using a correlation between (119)Sn Mossbauer and X-ray crystallographic data based on the point-charge model Theoretical calculations were performed with the B3LYP density functional employing 3-21G(*) and DZVP all electron basis sets showing good agreement with experimental findings General and Sn(IV) specific IR harmonic frequency scale factors for both basis sets were obtained from comparison with selected experimental frequencies (C) 2010 Elsevier B V All rights reserved
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Rhodococcus equi is a Gram-positive, facultative intracellular bacterium which infects macrophages and causes rhodococcal pneumonia and enteritis in foals. Recently, this agent has been recognized as an opportunistic pathogen for immunocompromised humans. Several murine experimental models have been used to study R. equi infection. High (H IV-A) and Low (L IV-A) antibody (Ab)-producers mice were obtained by bi-directional genetic selections for their ability to produce antibodies against sheep and human erythrocytes (Selection IV-A). These lines maintain their phenotypes of high and low responders also for other antigens than those of selection (multispeciflc effect). A higher macrophage activity in L IV-A mice has been described for several intracellular infectious agents, which could be responsible for their intense macrophage antigens (Ag)-handling and low Ab production. Due to these differences, L IV-A mice were found to exhibit a better performance to trigger an effective immune response towards intracellular pathogens. The objective of this work was to characterize the immune response of Selection IV-A against R. equi. H IV-A and L IV-A mice were infected with 2.0 × 10 6 CFU of ATCC 33701 +R. equi by intravenous route. With regards to bacterial clearance and survival assays, L IV-A mice were more resistant than H IV-A mice to virulent R. equi. L IV-A mice presented a higher hydrogen peroxide (H 2O 2) and nitric oxide (NO) endogenous production by splenic macrophages than H IV-A mice. L IV-A expressed the most intense cellular response, available by the Delayed-Type Hypersensitivity (DTH) reaction, which activated macrophages and produced more H 2O 2 and NO. The three times higher specific antibodies titres in H IV-A indicated that Selection IV-A maintained the multispecific effect and the polygenic control of humoral and cellular responses also to R. equi.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Several microbial systems have been shown to yield advantageous mutations in slowly growing or nongrowing cultures. In one assay system, the stationary-phase mutation mechanism differs from growth-dependent mutation, demonstrating that the two are different processes. This system assays reversion of a lac frameshift allele on an F′ plasmid in Escherichia coli. The stationary-phase mutation mechanism at lac requires recombination proteins of the RecBCD double-strand-break repair system and the inducible error-prone DNA polymerase IV, and the mutations are mostly −1 deletions in small mononucleotide repeats. This mutation mechanism is proposed to occur by DNA polymerase errors made during replication primed by recombinational double-strand-break repair. It has been suggested that this mechanism is confined to the F plasmid. However, the cells that acquire the adaptive mutations show hypermutation of unrelated chromosomal genes, suggesting that chromosomal sites also might experience recombination protein-dependent stationary-phase mutation. Here we test directly whether the stationary-phase mutations in the bacterial chromosome also occur via a recombination protein- and pol IV-dependent mechanism. We describe an assay for chromosomal mutation in cells carrying the F′ lac. We show that the chromosomal mutation is recombination protein- and pol IV-dependent and also is associated with general hypermutation. The data indicate that, at least in these male cells, recombination protein-dependent stationary-phase mutation is a mechanism of general inducible genetic change capable of affecting genes in the bacterial chromosome.
Resumo:
Chest radiography (CXR) is inferior to Thin-section computed tomography in the detection of asbestos related interstitial and pleural abnormalities. It remains unclear, however, whether these limitations are large enough to impair CXR´s ability in detecting the expected reduction in the frequency of these asbestos-related abnormalities (ARA) as exposure decreases. Clinical evaluation, CXR, Thin-section CT and spirometry were obtained in 1418 miners and millers who were exposed to progressively lower airborne concentrations of asbestos. They were separated into four groups according to the type, period and measurements of exposure and/or procedures for controlling exposure: Group I (1940-1966/tremolite and chrysotile, without measurements of exposure and procedures for controlling exposure); Group II (1967-1976/chrysotile only, without measurements of exposure and procedures for controlling exposure); Group III (1977-1980/chrysotile only, initiated measurements of exposure and procedures for controlling exposure) and Group IV (after 1981/chrysotile only, implemented measurements of exposure and a comprehensive procedures for controlling exposure). In all groups, CXR suggested more frequently interstitial abnormalities and less frequently pleural plaques than observed on Thin-section CT (p<0.050). The odds for asbestosis in groups of decreasing exposure diminished to greater extent at Thin-section CT than on CXR. Lung function was reduced in subjects who had pleural plaques evident only on Thin-section CT (p<0.050). In a longitudinal evaluation of 301 subjects without interstitial and pleural abnormalities on CXR and Thin-section CT in a previous evaluation, only Thin-section CT indicated that these ARA reduced as exposure decreased. CXR compared to Thin-section CT was associated with false-positives for interstitial abnormalities and false-negatives for pleural plaques, regardless of the intensity of asbestos exposure. Also, CXR led to a substantial misinformation of the effects of the progressively lower asbestos concentrations in the occurrence of asbestos-related diseases in miners and millers.
Resumo:
Aerobic metabolism changes rapidly to glycolysis post-mortem resulting in a pH-decrease during the transformation of muscle in to meat affecting ligand binding and redox potential of the heme iron in myoglobin, the meat pigment. The inorganic chemistry of meat involves (i) redox-cycling between iron(II), iron(III), and iron(IV)/protein radicals; (ii) ligand exchange processes; and (iii) spin-equilibra with a change in coordination number for the heme iron. In addition to the function of myoglobin for oxygen storage, new physiological roles of myoglobin are currently being discovered, which notably find close parallels in the processes in fresh meat and nitrite-cured meat products. Myoglobin may be characterized as a bioreactor for small molecules like O2, NO, CO, CO2, H2O, and HNO with importance in bio-regulation and in protection against oxidative stress in vivo otherwise affecting lipids in membranes. Many of these processes may be recognised as colour changes in fresh meat and cured meat products under different atmospheric conditions, and could also be instructive for teaching purposes.
Resumo:
PURPOSE: To study morphologic and histochemical alterations arising at the ileocystoplasty site. METHODS: Sixteen Wistar female rats were subjected to ileocystoplasty and sacrificed after eight weeks. Material collected was divided into four groups for histological and histochemical studies: Group I (control) - isolated ileum segment removed during ileocystoplasty; Group II - ileoileal anastomosis; Group III - ileovesical anastomosis and Group IV - ileal segment from the neobladder. Histological and histochemical study assessed dysplasia, metaplasia, acute and chronic inflammation, fibrosis, atrophy, hypertrophy, total mucins, sialomucins and sulfomucins. The non-parametric Wilcoxon and Mann-Whitney tests were employed in statistical analysis. RESULTS: None of the groups presented dysplasia. Acute inflammation and atrophy occurred in Groups II, III and IV, not reaching statistical significance. Metaplasia was significant only in Group III (p=0.012). Chronic inflammation, fibrosis and hypertrophy were significant in Groups II, III and IV. There was a significant increase in total mucin content in Group IV (p=0.014) and a reduction in Group III (p=0.016). Increases in sialomucins were observed in samples for Groups III (p=0.003) and IV (p=0.002) along with reduced sulfomucins in samples from Groups III (p=0.013) and IV (p=0.008). CONCLUSION: Ileocystoplasty in female rats caused squamous metaplasia, chronic inflammatory infiltration, fibrosis, hypertrophy, increase in sialomucin content, reduction in sulfomucins, and alterations in total mucin content with statistical significance, as well acute inflammatory infiltration and muscular atrophy with less intensity.
Resumo:
OBJECTIVE: New drugs have to be assessed in endodontic therapy due to the presence of microorganisms resistant to therapeutic procedures. Thus, this study evaluated the time- and concentration-dependent cytotoxicity of different antibiotics used in endodontic therapy. MATERIAL AND METHODS: Human gingival fibroblasts were treated and divided into the following experimental groups: Group I - control; Group II - ciprofoxacin hydrochloride; Group III - clyndamicin hydrochloride; and Group IV - metronidazole. Each drug was used at concentrations of 5, 50, 150, and 300 mg/L for 24, 48, 72, and 96 h. Cytotoxicity was evaluated by the MTT assay [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and spectrophotometric reading of ELISA plates. The results were analyzed by BioEstat 4.0 software using Kruskal-Wallis and Dunn's tests at a signifcance level of 5%. Cell viability was assessed for the different concentrations and times. RESULTS: All drugs presented dose-dependent cytotoxicity. Concentrations of 5 and 50 mgjL produced viable fibroblasts at all experimental times in all groups. CONCLUSIONS: Cell viability at 24 h was greater than in the other experimental times. Comparison between the same concentrations of antibiotics at different times showed that metronidazole presented the highest cell viability at 72 and 96 h compared to the other antibiotics, whereas clyndamicin hydrochloride showed higher cell viability at 72 h than ciprofoxacin hydrochloride.
Resumo:
Background: Coronary artery disease (CAD) is among the main causes of death in developed countries, and diet and lifestyle can influence CAD incidence. Objective: To evaluate the association of coronary artery disease risk score with dietary, anthropometric and biochemical components in adults clinically selected for a lifestyle modification program. Methods: 362 adults (96 men, 266 women, 53.9 +/- 9.4 years) fulfilled the inclusion criteria by presenting all the required data. The Framingham score was calculated and the IV Brazilian Guideline on Dyslipidemia and Prevention of Atherosclerosis was adopted for classification of the CAD risks. Anthropometric assessments included waist circumference (WC), body fat and calculated BMI (kg/m(2)) and muscle-mass index (MMI kg/m(2)). Dietary intake was estimated through 24 h dietary recall. Fasting blood was used for biochemical analysis. Metabolic Syndrome (MS) was diagnosed using NCEP-ATPIII (2001) criteria. Logistic regression was used to determine the odds of CAD risks according to the altered components of MS, dietary, anthropometric, and biochemical components. Results: For a sample with a BMI 28.5 +/- 5.0 kg/m(2) the association with lower risk (<10% CAD) were lower age (<60 years old), and plasma values of uric acid. The presence of MS within low, intermediary, and high CAD risk categories was 30.8%, 55.5%, and 69.8%, respectively. The independent risk factors associated with CAD risk score was MS and uric acid, and the protective factors were recommended intake of saturated fat and fiber and muscle mass index. Conclusion: Recommended intake of saturated fat and dietary fiber, together with proper muscle mass, are inversely associated with CAD risk score. On the other hand, the presence of MS and high plasma uric acid are associated with CAD risk score.
Resumo:
The knowledge of the atomic structure of clusters composed by few atoms is a basic prerequisite to obtain insights into the mechanisms that determine their chemical and physical properties as a function of diameter, shape, surface termination, as well as to understand the mechanism of bulk formation. Due to the wide use of metal systems in our modern life, the accurate determination of the properties of 3d, 4d, and 5d metal clusters poses a huge problem for nanoscience. In this work, we report a density functional theory study of the atomic structure, binding energies, effective coordination numbers, average bond lengths, and magnetic properties of the 3d, 4d, and 5d metal (30 elements) clusters containing 13 atoms, M(13). First, a set of lowest-energy local minimum structures (as supported by vibrational analysis) were obtained by combining high-temperature first- principles molecular-dynamics simulation, structure crossover, and the selection of five well-known M(13) structures. Several new lower energy configurations were identified, e. g., Pd(13), W(13), Pt(13), etc., and previous known structures were confirmed by our calculations. Furthermore, the following trends were identified: (i) compact icosahedral-like forms at the beginning of each metal series, more opened structures such as hexagonal bilayerlike and double simple-cubic layers at the middle of each metal series, and structures with an increasing effective coordination number occur for large d states occupation. (ii) For Au(13), we found that spin-orbit coupling favors the three-dimensional (3D) structures, i.e., a 3D structure is about 0.10 eV lower in energy than the lowest energy known two-dimensional configuration. (iii) The magnetic exchange interactions play an important role for particular systems such as Fe, Cr, and Mn. (iv) The analysis of the binding energy and average bond lengths show a paraboliclike shape as a function of the occupation of the d states and hence, most of the properties can be explained by the chemistry picture of occupation of the bonding and antibonding states.
Resumo:
The ligand-binding domain of the low-density lipoprotein (LDL) receptor is comprised of seven tandemly repeated ligand-binding modules, each being approximately 40 amino acids long and containing six conserved cysteine residues. We have expressed and characterized a concatemer of the first two modules (LB1 and LB2) of the human LDL receptor. Oxidative folding of the recombinant concatemer (rLB(1-2)), in the presence of calcium ions, gave a single dominant isomer with six disulfide bonds. Peptic cleavage of the short Linker region that connects the last cysteine residue of LB1 and the first cysteine residue of LB2 yielded two discrete fragments, thus excluding the presence of intermodule disulfide bonds. The N-terminal module, LB1, reacted with a conformation-specific monoclonal antibody (IgG-C7) made to LB1 in the native LDL receptor. From this, we concluded that the first module was correctly folded, with the same set of disulfide bonds as LB1 of the LDL receptor. The disulfide bond connections of LB2 were identified from mass spectral analysis of fragments formed by digestion of the C-terminal peptic fragment with elastase. These data showed that the disulfide bonds of LB2 connected Cys(I) and Cys(III), Cys(II) and Cys(V), and Cys(IV) and Cys(VI). This pattern is identical to that found for recombinant LB1 and LB2. The concatemer has two high-affinity calcium-binding sites, one per module. An analysis of the secondary chemical shifts of C alpha protons shows that the conformations of LB1 and LB2 in the concatemer are very similar to those of the individual modules, with no evidence for strong interactions between the two modules.
Resumo:
Objective: This study reports the prevalence and correlates of ICD-10 alcohol- and drug-use disorders in the National Survey of Mental Health and Wellbeing (NSMHWB) and discusses their implications for treatment. Method: The NSMHWB was a nationally representative household survey of 10 641 Australian adults that assessed participants for symptoms of the most prevalent ICD-10 and DSM-IV mental disorders, including alcohol- and drug-use disorders. Results: In the past 12 months 6.5% of Australian adults met criteria for an ICD-10 alcohol-use disorder and 2.2% had another ICD-10 drug-use disorder. Men were at higher risk than women of developing alcohol- and drug-use disorders and the prevalence of both disorders decreased with increasing age. There were high rates of comorbidity between alcohol- and other drug-use disorders and mental disorders and low rates of treatment seeking. Conclusions: Alcohol-use disorders are a major mental health and public health issue in Australia. Drug-use disorders are less common than alcohol-use disorders, but still affect a substantial minority of Australian adults. Treatment seeking among persons with alcohol- and other drug-use disorders is low. A range of public health strategies (including improved specialist treatment services) are needed to reduce the prevalence of these disorders.
Resumo:
In gastropod mollusks, neuroendocrine cells in the anterior ganglia have been shown to regulate growth and reproduction. As a first step toward understanding the molecular mechanisms underlying the regulation of these physiological processes in the tropical abalone Haliotis asinina, ive have identified sets of POU, Sox, and Pax transcription factor genes that are expressed in these ganglia. Using highly degenerate oligonucleotide primers designed to anneal to conserved codons in each of these gene families, we have amplified by reverse transcriptase polymerase chain reaction 2 POU genes (HasPOU-III and HasPOU-IV), 2 Sox genes (HasSox-B and HasSox-C), and two Pax genes (HasPax-258 and HaxPax-6). Analyses with gene-specific primers indicated that the 6 genes are expressed in the cerebral and pleuropedal ganglia of both reproductively active and spent adults, in a number of sensory structures, and in a subset of other adult tissues.