916 resultados para DIFFUSION LAYERS
Resumo:
One common assumption in interpreting ice-core CO(2) records is that diffusion in the ice does not affect the concentration profile. However, this assumption remains untested because the extremely small CO(2) diffusion coefficient in ice has not been accurately determined in the laboratory. In this study we take advantage of high levels of CO(2) associated with refrozen layers in an ice core from Siple Dome, Antarctica, to study CO(2) diffusion rates. We use noble gases (Xe/Ar and Kr/Ar), electrical conductivity and Ca(2+) ion concentrations to show that substantial CO(2) diffusion may occur in ice on timescales of thousands of years. We estimate the permeation coefficient for CO(2) in ice is similar to 4 x 10(-21) mol m(-1) s(-1) Pa(-1) at -23 degrees C in the top 287 m (corresponding to 2.74 kyr). Smoothing of the CO(2) record by diffusion at this depth/age is one or two orders of magnitude smaller than the smoothing in the firn. However, simulations for depths of similar to 930-950m (similar to 60-70 kyr) indicate that smoothing of the CO(2) record by diffusion in deep ice is comparable to smoothing in the firn. Other types of diffusion (e.g. via liquid in ice grain boundaries or veins) may also be important but their influence has not been quantified.
Resumo:
Since no single experimental or modeling technique provides data that allow a description of transport processes in clays and clay minerals at all relevant scales, several complementary approaches have to be combined to understand and explain the interplay between transport relevant phenomena. In this paper molecular dynamics simulations (MD) were used to investigate the mobility of water in the interlayer of montmorillonite (Mt), and to estimate the influence of mineral surfaces and interlayer ions on the water diffusion. Random Walk (RW) simulations based on a simplified representation of pore space in Mt were used to estimate and understand the effect of the arrangement of Mt particles on the meso- to macroscopic diffusivity of water. These theoretical calculations were complemented with quasielastic neutron scattering (QENS) measurements of aqueous diffusion in Mt with two pseudo-layers of water performed at four significantly different energy resolutions (i.e. observation times). The size of the interlayer and the size of Mt particles are two characteristic dimensions which determine the time dependent behavior of water diffusion in Mt. MD simulations show that at very short time scales water dynamics has the characteristic features of an oscillatory motion in the cage formed by neighbors in the first coordination shell. At longer time scales, the interaction of water with the surface determines the water dynamics, and the effect of confinement on the overall water mobility within the interlayer becomes evident. At time scales corresponding to an average water displacement equivalent to the average size of Mt particles, the effects of tortuosity are observed in the meso- to macroscopic pore scale simulations. Consistent with the picture obtained in the simulations, the QENS data can be described using a (local) 3D diffusion at short observation times, whereas at sufficiently long observation times a 2D diffusive motion is clearly observed. The effects of tortuosity measured in macroscopic tracer diffusion experiments are in qualitative agreement with RW simulations. By using experimental data to calibrate molecular and mesoscopic theoretical models, a consistent description of water mobility in clay minerals from the molecular to the macroscopic scale can be achieved. In turn, simulations help in choosing optimal conditions for the experimental measurements and the data interpretation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Conditions are identified under which analyses of laminar mixing layers can shed light on aspects of turbulent spray combustion. With this in mind, laminar spray-combustion models are formulated for both non-premixed and partially premixed systems. The laminar mixing layer separating a hot-air stream from a monodisperse spray carried by either an inert gas or air is investigated numerically and analytically in an effort to increase understanding of the ignition process leading to stabilization of high-speed spray combustion. The problem is formulated in an Eulerian framework, with the conservation equations written in the boundary-layer approximation and with a one-step Arrhenius model adopted for the chemistry description. The numerical integrations unveil two different types of ignition behaviour depending on the fuel availability in the reaction kernel, which in turn depends on the rates of droplet vaporization and fuel-vapour diffusion. When sufficient fuel is available near the hot boundary, as occurs when the thermochemical properties of heptane are employed for the fuel in the integrations, combustion is established through a precipitous temperature increase at a well-defined thermal-runaway location, a phenomenon that is amenable to a theoretical analysis based on activation-energy asymptotics, presented here, following earlier ideas developed in describing unsteady gaseous ignition in mixing layers. By way of contrast, when the amount of fuel vapour reaching the hot boundary is small, as is observed in the computations employing the thermochemical properties of methanol, the incipient chemical reaction gives rise to a slowly developing lean deflagration that consumes the available fuel as it propagates across the mixing layer towards the spray. The flame structure that develops downstream from the ignition point depends on the fuel considered and also on the spray carrier gas, with fuel sprays carried by air displaying either a lean deflagration bounding a region of distributed reaction or a distinct double-flame structure with a rich premixed flame on the spray side and a diffusion flame on the air side. Results are calculated for the distributions of mixture fraction and scalar dissipation rate across the mixing layer that reveal complexities that serve to identify differences between spray-flamelet and gaseous-flamelet problems.
Resumo:
Ascorbate peroxidase (AP) is a key enzyme that scavenges potentially harmful H2O2 and thus prevents oxidative damage in plants, especially in N2-fixing legume root nodules. The present study demonstrates that the nodule endodermis of alfalfa (Medicago sativa) root nodules contains elevated levels of AP protein, as well as the corresponding mRNA transcript and substrate (ascorbate). Enhanced AP protein levels were also found in cells immediately peripheral to the infected region of soybean (Glycine max), pea (Pisum sativum), clover (Trifolium pratense), and common bean (Phaseolus vulgaris) nodules. Regeneration of ascorbate was achieved by (homo)glutathione and associated enzymes of the ascorbate-glutathione pathway, which were present at high levels. The presence of high levels of antioxidants suggests that respiratory consumption of O2 in the endodermis or nodule parenchyma may be an essential component of the O2-diffusion barrier that regulates the entry of O2 into the central region of nodules and ensures optimal functioning of nitrogenase.
Resumo:
The skin localization of steroids following topical application is largely unknown. We determined the distribution of five steroids in human skin using excised epidermal, dermal, and full-thickness membranes in vitro. There was no significant difference in steroid maximum flux through epidermal and full-thickness membranes, other than significantly lower fluxes for the most polar steroid, aldosterone. Hydrocortisone had the highest dermal diffusivity and dermal penetration, and the accumulation of hydrocortisone and corticosterone was higher than that of the other steroids. Slower penetration and higher accumulation in the viable epidermis of progesterone in full-thickness skin were consistent with dermal penetration limitation effects associated with high lipophilicity. Copyright (c) 2006 S. Karger AG, Basel
Resumo:
Many instances of differential diffusion, i e, different species having different turbulent diffusion coefficients in the same flow, can be explained as a finite mixing length effect. That is, in a simple mixing length scenario, the turbulent diffusion coefficient has the form 1 ( m )2 m m c l K w l OL = + where, wm is the mixing velocity, lm the mixing length and Lc the overall distribution scale for a particular species. The first term represents the familiar gradient diffusion while the second term becomes important when lm/Lc is finite. This second term shows that different species will have different diffusion coefficients if they have different overall distribution scales. Such different Lcs may come about due to different boundary conditions and different intrinsic properties (molecular diffusivity, settling velocity etc) for different species. For momentum transfer in turbulent oscillatory boundary layers the second term is imaginary and explains observed phase leads of shear stresses ahead of velocity gradients.
Resumo:
The aim of this study is to test the feasibility and reproducibility of diffusion-weighted magnetic resonance imaging (DW-MRI) evaluations of the fetal brains in cases of twin-twin transfusion syndrome (TTTS). From May 2011 to June 2012, 24 patients with severe TTTS underwent MRI scans for evaluation of the fetal brains. Datasets were analyzed offline on axial DW images and apparent diffusion coefficient (ADC) maps by two radiologists. The subjective evaluation was described as the absence or presence of water diffusion restriction. The objective evaluation was performed by the placement of 20-mm(2) circular regions of interest on the DW image and ADC maps. Subjective interobserver agreement was assessed by the kappa correlation coefficient. Objective intraobserver and interobserver agreements were assessed by proportionate Bland-Altman tests. Seventy-four DW-MRI scans were performed. Sixty of them (81.1%) were considered to be of good quality. Agreement between the radiologists was 100% for the absence or presence of diffusion restriction of water. For both intraobserver and interobserver agreement of ADC measurements, proportionate Bland-Altman tests showed average percentage differences of less than 1.5% and 95% CI of less than 18% for all sites evaluated. Our data demonstrate that DW-MRI evaluation of the fetal brain in TTTS is feasible and reproducible.
Resumo:
Low-density nanostructured foams are often limited in applications due to their low mechanical and thermal stabilities. Here we report an approach of building the structural units of three-dimensional (3D) foams using hybrid two-dimensional (2D) atomic layers made of stacked graphene oxide layers reinforced with conformal hexagonal boron nitride (h-BN) platelets. The ultra-low density (1/400 times density of graphite) 3D porous structures are scalably synthesized using solution processing method. A layered 3D foam structure forms due to presence of h-BN and significant improvements in the mechanical properties are observed for the hybrid foam structures, over a range of temperatures, compared with pristine graphene oxide or reduced graphene oxide foams. It is found that domains of h-BN layers on the graphene oxide framework help to reinforce the 2D structural units, providing the observed improvement in mechanical integrity of the 3D foam structure.
Resumo:
The ethanol oxidation reaction (EOR) is investigated on Pt/Au(hkl) electrodes. The Au(hkl) single crystals used belong to the [n(111)x(110)] family of planes. Pt is deposited following the galvanic exchange of a previously deposited Cu monolayer using a Pt(2+) solution. Deposition is not epitaxial and the defects on the underlying Au(hkl) substrates are partially transferred to the Pt films. Moreover, an additional (100)-step-like defect is formed, probably as a result of the strain resulting from the Pt and Au lattice mismatch. Regarding the EOR, both vicinal Pt/Au(hkl) surfaces exhibit a behavior that differs from that expected for stepped Pt; for instance, the smaller the step density on the underlying Au substrate, the greater the ability to break the CC bond in the ethanol molecule, as determined by in situ Fourier transform infrared spectroscopy measurements. Also, we found that the acetic acid production is favored as the terrace width decreases, thus reflecting the inefficiency of the surface array to cleave the ethanol molecule.
Resumo:
We study how the crossover exponent, phi, between the directed percolation (DP) and compact directed percolation (CDP) behaves as a function of the diffusion rate in a model that generalizes the contact process. Our conclusions are based in results pointed by perturbative series expansions and numerical simulations, and are consistent with a value phi = 2 for finite diffusion rates and phi = 1 in the limit of infinite diffusion rate.
Resumo:
We have the purpose of analyzing the effect of explicit diffusion processes in a predator-prey stochastic lattice model. More precisely we wish to investigate the possible effects due to diffusion upon the thresholds of coexistence of species, i. e., the possible changes in the transition between the active state and the absorbing state devoid of predators. To accomplish this task we have performed time dependent simulations and dynamic mean-field approximations. Our results indicate that the diffusive process can enhance the species coexistence.
Resumo:
This study aimed to evaluate the diffusion capacity of calcium hydroxide pastes with different vehicles through dentinal tubules. The study was conducted on 60 extracted single-rooted human teeth whose crowns had been removed. The root canals were instrumented and divided into 4 groups according to the vehicle of the calcium hydroxide paste: Group I - distilled water; Group II - propylene glycol; Group III - 0.2% chlorhexidine; Group IV - 2% chlorhexidine. After placement of the root canal dressings, the teeth were sealed and placed in flasks containing deionized water. After 1, 2, 7, 15, 30, 45 and 60 days, the pH of the water was measured to determine the diffusion of calcium hydroxide through the dentinal tubules. The data were recorded and statistically compared by the Tukey test. The results showed that all pastes presented a similar diffusion capacity through dentin. Group IV did not present difference compared to group I. Group II presented difference compared to the other groups, as did Group III. In conclusion, groups I and IV presented a better diffusion capacity through dentin than groups II and III; 2% chlorhexidine can be used as a vehicle in calcium hydroxide pastes.
Resumo:
Three welding procedures used to rebuild worn shafts in sugar cane mills were analysed: two submerged arc welding processes and one flux cored arc welding (FCAW) process. Sliding wear tests were in accordance with ASTM G 77 standard, using rings of welding material, blocks of bronze SAE 67, and oil as lubricant. The worn surfaces of rings and blocks were analysed by scanning electron microscopy to determine the wear mechanisms. High contact pressure, high operating temperature, and low relative speed were applied in sliding wear tests to match the conditions in sugar cane mills. Transferred material and evidence of adhesive junctions were detected. Additionally, hardened fragments produced abrasive grooves on the worn surfaces. The welding deposits that presented strong adhesion on the worn surface showed higher mass loss than the materials that presented more abrasive characteristics. Plastic mechanical properties were measured and related to the mass loss. The tested materials presented similar hardness but different yield stress and hardening coefficient. A relationship between wear, strain hardening coefficient, and yield stress was found. The welding deposit that presented the highest hardening coefficient showed the highest mass loss, with evidence of severe adhesion on the worn surface.
Resumo:
We report numerically and analytically estimated values for the Hurst exponent for a recently proposed non-Markovian walk characterized by amnestically induced persistence. These results are consistent with earlier studies showing that log-periodic oscillations arise only for large memory losses of the recent past. We also report numerical estimates of the Hurst exponent for non-Markovian walks with diluted memory. Finally, we study walks with a fractal memory of the past for a Thue-Morse and Fibonacci memory patterns. These results are interpreted and discussed in the context of the necessary and sufficient conditions for the central limit theorem to hold.