968 resultados para DENTAL CERAMICS
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
The continuing advances in technology, dental materials and equipment have contributed significantly to improve the level of esthetic dentistry today. Among these innovations, development of pure ceramic restorations has evolved to give different alternatives. Dental ceramics have presented a rapidly technological changing to improve mechanical and optical properties. Currently there are several systems of metal free ceramics with excellent mechanical and optical properties, for making crowns and plurals. These modern systems are presented with various compositions and different preparation techniques, making these more versatile. Within this perspective, the dental market offers a huge range of new indirect and metal-free materials for prostheses, providing new options, plus also new questions to decide among the available alternatives. The aim of this review is take a view of the different ceramic systems in terms of its composition and different techniques of production.
Resumo:
Society's change of parameters for health and aesthetics has resulted in an increased demand for dental treatments. Nowadays, ceramics systems have shown a substantial development, becoming more reliable and predictable. Dental ceramics, besides being chemically stable, present excellent optical properties when compared to dental structures, thus assuring a special position in the list of aesthetic restorative materials. OBJECTIVE, CASE REPORT AND CONCLUSION: This article describes a successful clinical procedure involving the anterior teeth aesthetics, which were restored with all-ceramic crowns (IPS e.max® Ivoclar Vivadent).
Resumo:
The reestablishment of a harmonious smile through dental ceramics, when properly conducted and with specific indications, can achieve extremely predictable results. For aesthetic and functional rehabilitation, many ceramic materials can be used such as zirconia, leucite, alumina, feldspar, and lithium disilicate. Among these materials the lithium disilicate stands out due to the following characteristics: its resistance to wear, to chemical attack, high temperatures and oxidation; low electrical conductivity; near zero thermal expansion; good optical properties and biocompatibility with periodontal; excellent esthetics; color stability and reinforcement of tooth structure. The indications for the use of lithium disilicate are not limited to multiple facets of teeth in cases where there was no favorable response to tooth whitening, and also comprehend teeth with multiple restorations, diastema closure, shape alteration, and dental contouring, replacement of missing or fractured teeth, among others. The versatility of lithium disilicate ceramics allows its utilization in several clinical situations. The concomitant use of lithium disilicate for veneers and over metal has satisfactory aesthetic results, as reported in the present studying cases that require both aesthetics and resistance.
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Statement of problem. Surface transformation with nonthermal plasma may be a suitable treatment for dental ceramics, because it does not affect the physical properties of the ceramic material.Purpose. The purpose of this study was to characterize the chemical composition of lithium disilicate ceramic and evaluate the surface of this material after nonthermal plasma treatment.Material and methods. A total of 21 specimens of lithium disilicate (10 mm in diameter and 3 mm thick) were fabricated and randomly divided into 3 groups (n=7) according to surface treatment. The control group was not subjected to any treatment except surface polishing with abrasive paper. In the hydrofluoric acid group, the specimens were subjected to hydrofluoric acid gel before silane application. Specimens in the nonthermal plasma group were subjected to the nonthermal plasma treatment. The contact angle was measured to calculate surface energy. In addition, superficial roughness was measured and was examined with scanning electron microscopy, and the chemical composition was characterized with energy-dispersive spectroscopy analysis. The results were analyzed with ANOVA and the Tukey honestly significant difference test (alpha=.05).Results. The water contact angle was decreased to 0 degrees after nonthermal plasma treatment. No significant difference in surface roughness was observed between the control and nonthermal plasma groups. Scanning electron microscopy and energy-dispersive spectroscopy images indicated higher amounts of oxygen (O) and silicon (Si) and a considerable reduction in carbon (C) in the specimens after nonthermal plasma treatment.Conclusions. Nonthermal plasma treatment can transform the characteristics of a ceramic surface without affecting its surface roughness. A reduction in C levels and an increase in 0 and Si levels were observed with the energy-dispersive spectroscopy analysis, indicating that the deposition of the thin silica film was efficient.
Resumo:
Although ceramics present high compressive strength, they are brittle materials due to their low tensile strength so they have lower capacity to absorb shocks. This study evaluated the fracture toughness of different ceramic systems, which refers to the ability of a friable material to absorb defformation energy. Three ceramic systems were investigated. Ten cylindrical samples (5,0mm x 3,0mm), were obtained from each ceramic material as follows: G1- 10 samples of Vitadur Alpha (Vita-Zahnfabrik); G2- 10 samples of IPS Empress2 (Ivoclar-Vivadent); G3- 10 samples of In-Ceram Alumina (Vita-Zahnfabrik). Fracture toughness values were collected upon indentation tests that were performed under a heavy load. A microhardness tester (Digital Microhardness Tester FM) utilized a 500gf load cell during 10seconds to perform four impressions on each sample. Statistically significant results were observed (ANOVA and Kruskal-Wallis tests). In-Ceram Alumina presented the highest median toughness values (2,96N/m3/2), followed by Vitadur Alpha (2,08N/m3/2) and IPS Empress2 (1,05N/m3/2). It may be concluded that different ceramic systems present distinct fracture toughness values, thus In-Ceram is capable of absorbing superior stress when compared to Vitadur Alpha and IPS Empress2.
Resumo:
The demand for esthetic restorations has resulted in an increased use of dental ceramics and is the main alternative restorative material to tooth structure due to its favorable properties. Therefore, the aim of this work is to study the evolution of ceramic systems, involving different types and properties, indications, and clinical issues as aesthetic, cementing and longevity. In a detailed and advanced search in the database PubMed, 98 articles were found using the following key words: dental porcelain dental all-ceramic and ceramic according to the criteria for inclusion and exclusion left only 35 articles for review. Several ceramic systems are available in the market, making the prosthetic professionals need a constant recycling about their properties and directions, since good results are due to the selection of the best material for a particular case in all the skill of the practitioner.