248 resultados para DECONVOLUTION
Resumo:
A constrained high-order statistical algorithm is proposed to blindly deconvolute the measured spectral data and estimate the response function of the instruments simultaneously. In this algorithm, no prior-knowledge is necessary except a proper length of the unit-impulse response. This length can be easily set to be the width of the narrowest spectral line by observing the measured data. The feasibility of this method has been demonstrated experimentally by the measured Raman and absorption spectral data.
Resumo:
Abstract—There are sometimes occasions when ultrasound beamforming is performed with only a subset of the total data that will eventually be available. The most obvious example is a mechanically-swept (wobbler) probe in which the three-dimensional data block is formed from a set of individual B-scans. In these circumstances, non-blind deconvolution can be used to improve the resolution of the data. Unfortunately, most of these situations involve large blocks of three-dimensional data. Furthermore, the ultrasound blur function varies spatially with distance from the transducer. These two facts make the deconvolution process time-consuming to implement. This paper is about ways to address this problem and produce spatially-varying deconvolution of large blocks of three-dimensional data in a matter of seconds. We present two approaches, one based on hardware and the other based on software. We compare the time they each take to achieve similar results and discuss the computational resources and form of blur model that each requires.
Restoration of images and 3D data to higher resolution by deconvolution with sparsity regularization
Resumo:
Image convolution is conventionally approximated by the LTI discrete model. It is well recognized that the higher the sampling rate, the better is the approximation. However sometimes images or 3D data are only available at a lower sampling rate due to physical constraints of the imaging system. In this paper, we model the under-sampled observation as the result of combining convolution and subsampling. Because the wavelet coefficients of piecewise smooth images tend to be sparse and well modelled by tree-like structures, we propose the L0 reweighted-L2 minimization (L0RL2 ) algorithm to solve this problem. This promotes model-based sparsity by minimizing the reweighted L2 norm, which approximates the L0 norm, and by enforcing a tree model over the weights. We test the algorithm on 3 examples: a simple ring, the cameraman image and a 3D microscope dataset; and show that good results can be obtained. © 2010 IEEE.
Resumo:
This paper is in two parts and addresses two of getting more information out of the RF signal from three-dimensional (3D) mechanically-swept medical ultrasound . The first topic is the use of non-blind deconvolution improve the clarity of the data, particularly in the direction to the individual B-scans. The second topic is imaging. We present a robust and efficient approach to estimation and display of axial strain information. deconvolution, we calculate an estimate of the point-spread at each depth in the image using Field II. This is used as of an Expectation Maximisation (EM) framework in which ultrasound scatterer field is modelled as the product of (a) a smooth function and (b) a fine-grain varying function. the E step, a Wiener filter is used to estimate the scatterer based on an assumed piecewise smooth component. In the M , wavelet de-noising is used to estimate the piecewise smooth from the scatterer field. strain imaging, we use a quasi-static approach with efficient based algorithms. Our contributions lie in robust and 3D displacement tracking, point-wise quality-weighted , and a stable display that shows not only strain but an indication of the quality of the data at each point in the . This enables clinicians to see where the strain estimate is and where it is mostly noise. deconvolution, we present in-vivo images and simulations quantitative performance measures. With the blurred 3D taken as OdB, we get an improvement in signal to noise ratio 4.6dB with a Wiener filter alone, 4.36dB with the ForWaRD and S.18dB with our EM algorithm. For strain imaging show images based on 2D and 3D data and describe how full D analysis can be performed in about 20 seconds on a typical . We will also present initial results of our clinical study to explore the applications of our system in our local hospital. © 2008 IEEE.