964 resultados para DATA TRANSMISSION
Resumo:
We examine data transmission during the interval immediately after wavelength switching of a tunable laser and, through simulation, we demonstrate how choice of modulation format can improve the efficacy of an optical burst/packet switched network. © 2013 Optical Society of America.
Resumo:
Pop-up archival tags (PAT) provide summary and high-resolution time series data at predefined temporal intervals. The limited battery capabilities of PATs often restrict the transmission success and thus temporal coverage of both data products. While summary data are usually less affected by this problem, as a result of its lower size, it might be less informative. We here investigate the accuracy and feasibility of using temperature at depth summary data provided by PATs to describe encountered oceanographic conditions. Interpolated temperature at depth summary data was found to provide accurate estimates of three major thermal water column structure indicators: thermocline depth, stratification and ocean heat content. Such indicators are useful for the interpretation of the tagged animal's horizontal and vertical behaviour. The accuracy of these indicators was found to be particularly sensitive to the number of data points available in the first 100 m, which in turn depends on the vertical behaviour of the tagged animal. Based on our results, we recommend the use of temperature at depth summary data as opposed to temperature time series data for PAT studies; doing so during the tag programming will help to maximize the amount of transmitted time series data for other key data types such as light levels and depth.
Resumo:
There is a growing demand for data transmission over digital networks involving mobile terminals. An important class of data required for transmission over mobile terminals is image information such as street maps, floor plans and identikit images. This sort of transmission is of particular interest to the service industries such as the Police force, Fire brigade, medical services and other services. These services cannot be applied directly to mobile terminals because of the limited capacity of the mobile channels and the transmission errors caused by the multipath (Rayleigh) fading. In this research, transmission of line diagram images such as floor plans and street maps, over digital networks involving mobile terminals at transmission rates of 2400 bits/s and 4800 bits/s have been studied. A low bit-rate source encoding technique using geometric codes is found to be suitable to represent line diagram images. In geometric encoding, the amount of data required to represent or store the line diagram images is proportional to the image detail. Thus a simple line diagram image would require a small amount of data. To study the effect of transmission errors due to mobile channels on the transmitted images, error sources (error files), which represent mobile channels under different conditions, have been produced using channel modelling techniques. Satisfactory models of the mobile channel have been obtained when compared to the field test measurements. Subjective performance tests have been carried out to evaluate the quality and usefulness of the received line diagram images under various mobile channel conditions. The effect of mobile transmission errors on the quality of the received images has been determined. To improve the quality of the received images under various mobile channel conditions, forward error correcting codes (FEC) with interleaving and automatic repeat request (ARQ) schemes have been proposed. The performance of the error control codes have been evaluated under various mobile channel conditions. It has been shown that a FEC code with interleaving can be used effectively to improve the quality of the received images under normal and severe mobile channel conditions. Under normal channel conditions, similar results have been obtained when using ARQ schemes. However, under severe mobile channel conditions, the FEC code with interleaving shows better performance.
Resumo:
The simulation analysis is important approach to developing and evaluating the systems in terms of development time and cost. This paper demonstrates the application of Time Division Cluster Scheduling (TDCS) tool for the configuration of IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs using the simulation analysis, as an illustrative example that confirms the practical applicability of the tool. The simulation study analyses how the number of retransmissions impacts the reliability of data transmission, the energy consumption of the nodes and the end-to-end communication delay, based on the simulation model that was implemented in the Opnet Modeler. The configuration parameters of the network are obtained directly from the TDCS tool. The simulation results show that the number of retransmissions impacts the reliability, the energy consumption and the end-to-end delay, in a way that improving the one may degrade the others.
Resumo:
This work is dedicated to comparison of open source as well as proprietary transport protocols for highspeed data transmission via IP networks. The contemporary common TCP needs significant improvement since it was developed as general-purpose transport protocol and firstly introduced four decades ago. In nowadays networks, TCP fits not all communication needs that society has. Caused of it another transport protocols have been developed and successfully used for e.g. Big Data movement. In scope of this research the following protocols have been investigated for its efficiency on 10Gbps links: UDT, RBUDP, MTP and RWTP. The protocols were tested under different impairments such as Round Trip Time up to 400 ms and packet losses up to 2%. Investigated parameters are the data rate under different conditions of the network, the CPU load by sender andreceiver during the experiments, size of feedback data, CPU usage per Gbps and the amount of feedback data per GiByte of effectively transmitted data. The best performance and fair resources consumption was observed by RWTP. From the opensource projects, the best behavior is showed by RBUDP.
Resumo:
The European Surveillance of Congenital Anomalies (EUROCAT) network of population-based congenital anomaly registries is an important source of epidemiologic information on congenital anomalies in Europe covering live births, fetal deaths from 20 weeks gestation, and terminations of pregnancy for fetal anomaly. EUROCAT's policy is to strive for high-quality data, while ensuring consistency and transparency across all member registries. A set of 30 data quality indicators (DQIs) was developed to assess five key elements of data quality: completeness of case ascertainment, accuracy of diagnosis, completeness of information on EUROCAT variables, timeliness of data transmission, and availability of population denominator information. This article describes each of the individual DQIs and presents the output for each registry as well as the EUROCAT (unweighted) average, for 29 full member registries for 2004-2008. This information is also available on the EUROCAT website for previous years. The EUROCAT DQIs allow registries to evaluate their performance in relation to other registries and allows appropriate interpretations to be made of the data collected. The DQIs provide direction for improving data collection and ascertainment, and they allow annual assessment for monitoring continuous improvement. The DQI are constantly reviewed and refined to best document registry procedures and processes regarding data collection, to ensure appropriateness of DQI, and to ensure transparency so that the data collected can make a substantial and useful contribution to epidemiologic research on congenital anomalies.
Resumo:
The design of control, estimation or diagnosis algorithms most often assumes that all available process variables represent the system state at the same instant of time. However, this is never true in current network systems, because of the unknown deterministic or stochastic transmission delays introduced by the communication network. During the diagnosing stage, this will often generate false alarms. Under nominal operation, the different transmission delays associated with the variables that appear in the computation form produce discrepancies of the residuals from zero. A technique aiming at the minimisation of the resulting false alarms rate, that is based on the explicit modelling of communication delays and on their best-case estimation is proposed
Resumo:
This report describes the results of the research project investigating the use of advanced field data acquisition technologies for lowa transponation agencies. The objectives of the research project were to (1) research and evaluate current data acquisition technologies for field data collection, manipulation, and reporting; (2) identify the current field data collection approach and the interest level in applying current technologies within Iowa transportation agencies; and (3) summarize findings, prioritize technology needs, and provide recommendations regarding suitable applications for future development. A steering committee consisting oretate, city, and county transportation officials provided guidance during this project. Technologies considered in this study included (1) data storage (bar coding, radio frequency identification, touch buttons, magnetic stripes, and video logging); (2) data recognition (voice recognition and optical character recognition); (3) field referencing systems (global positioning systems [GPS] and geographic information systems [GIs]); (4) data transmission (radio frequency data communications and electronic data interchange); and (5) portable computers (pen-based computers). The literature review revealed that many of these technologies could have useful applications in the transponation industry. A survey was developed to explain current data collection methods and identify the interest in using advanced field data collection technologies. Surveys were sent out to county and city engineers and state representatives responsible for certain programs (e.g., maintenance management and construction management). Results showed that almost all field data are collected using manual approaches and are hand-carried to the office where they are either entered into a computer or manually stored. A lack of standardization was apparent for the type of software applications used by each agency--even the types of forms used to manually collect data differed by agency. Furthermore, interest in using advanced field data collection technologies depended upon the technology, program (e.g.. pavement or sign management), and agency type (e.g., state, city, or county). The state and larger cities and counties seemed to be interested in using several of the technologies, whereas smaller agencies appeared to have very little interest in using advanced techniques to capture data. A more thorough analysis of the survey results is provided in the report. Recommendations are made to enhance the use of advanced field data acquisition technologies in Iowa transportation agencies: (1) Appoint a statewide task group to coordinate the effort to automate field data collection and reporting within the Iowa transportation agencies. Subgroups representing the cities, counties, and state should be formed with oversight provided by the statewide task group. (2) Educate employees so that they become familiar with the various field data acquisition technologies.
Resumo:
This thesis considers aspects related to the design and standardisation of transmission systems for wireless broadcasting, comprising terrestrial and mobile reception. The purpose is to identify which factors influence the technical decisions and what issues could be better considered in the design process in order to assess different use cases, service scenarios and end-user quality. Further, the necessity of cross-layer optimisation for efficient data transmission is emphasised and means to take this into consideration are suggested. The work is mainly related terrestrial and mobile digital video broadcasting systems but many of the findings can be generalised also to other transmission systems and design processes. The work has led to three main conclusions. First, it is discovered that there are no sufficiently accurate error criteria for measuring the subjective perceived audiovisual quality that could be utilised in transmission system design. Means for designing new error criteria for mobile TV (television) services are suggested and similar work related to other services is recommended. Second, it is suggested that in addition to commercial requirements there should be technical requirements setting the frame work for the design process of a new transmission system. The technical requirements should include the assessed reception conditions, technical quality of service and service functionalities. Reception conditions comprise radio channel models, receiver types and antenna types. Technical quality of service consists of bandwidth, timeliness and reliability. Of these, the thesis focuses on radio channel models and errorcriteria (reliability) as two of the most important design challenges and provides means to optimise transmission parameters based on these. Third, the thesis argues that the most favourable development for wireless broadcasting would be a single system suitable for all scenarios of wireless broadcasting. It is claimed that there are no major technical obstacles to achieve this and that the recently published second generation digital terrestrial television broadcasting system provides a good basis. The challenges and opportunities of a universal wireless broadcasting system are discussed mainly from technical but briefly also from commercial and regulatory aspect
Resumo:
One of the major applications of underwater acoustic sensor networks (UWASN) is ocean environment monitoring. Employing data mules is an energy efficient way of data collection from the underwater sensor nodes in such a network. A data mule node such as an autonomous underwater vehicle (AUV) periodically visits the stationary nodes to download data. By conserving the power required for data transmission over long distances to a remote data sink, this approach extends the network life time. In this paper we propose a new MAC protocol to support a single mobile data mule node to collect the data sensed by the sensor nodes in periodic runs through the network. In this approach, the nodes need to perform only short distance, single hop transmission to the data mule. The protocol design discussed in this paper is motivated to support such an application. The proposed protocol is a hybrid protocol, which employs a combination of schedule based access among the stationary nodes along with handshake based access to support mobile data mules. The new protocol, RMAC-M is developed as an extension to the energy efficient MAC protocol R-MAC by extending the slot time of R-MAC to include a contention part for a hand shake based data transfer. The mobile node makes use of a beacon to signal its presence to all the nearby nodes, which can then hand-shake with the mobile node for data transfer. Simulation results show that the new protocol provides efficient support for a mobile data mule node while preserving the advantages of R-MAC such as energy efficiency and fairness.
Resumo:
The design of control, estimation or diagnosis algorithms most often assumes that all available process variables represent the system state at the same instant of time. However, this is never true in current network systems, because of the unknown deterministic or stochastic transmission delays introduced by the communication network. During the diagnosing stage, this will often generate false alarms. Under nominal operation, the different transmission delays associated with the variables that appear in the computation form produce discrepancies of the residuals from zero. A technique aiming at the minimisation of the resulting false alarms rate, that is based on the explicit modelling of communication delays and on their best-case estimation is proposed
Resumo:
Written for communications and electronic engineers, technicians and students, this book begins with an introduction to data communications, and goes on to explain the concept of layered communications. Other chapters deal with physical communications channels, baseband digital transmission, analog data transmission, error control and data compression codes, physical layer standards, the data link layer, the higher layers of the protocol hierarchy, and local are networks (LANS). Finally, the book explores some likely future developments.
Resumo:
Wireless Sensor Networks (WSNs) have been an exciting topic in recent years. The services offered by a WSN can be classified into three major categories: monitoring, alerting, and information on demand. WSNs have been used for a variety of applications related to the environment (agriculture, water and forest fire detection), the military, buildings, health (elderly people and home monitoring), disaster relief, and area or industrial monitoring. In most WSNs tasks like processing the sensed data, making decisions and generating emergency messages are carried out by a remote server, hence the need for efficient means of transferring data across the network. Because of the range of applications and types of WSN there is a need for different kinds of MAC and routing protocols in order to guarantee delivery of data from the source nodes to the server (or sink). In order to minimize energy consumption and increase performance in areas such as reliability of data delivery, extensive research has been conducted and documented in the literature on designing energy efficient protocols for each individual layer. The most common way to conserve energy in WSNs involves using the MAC layer to put the transceiver and the processor of the sensor node into a low power, sleep state when they are not being used. Hence the energy wasted due to collisions, overhearing and idle listening is reduced. As a result of this strategy for saving energy, the routing protocols need new solutions that take into account the sleep state of some nodes, and which also enable the lifetime of the entire network to be increased by distributing energy usage between nodes over time. This could mean that a combined MAC and routing protocol could significantly improve WSNs because the interaction between the MAC and network layers lets nodes be active at the same time in order to deal with data transmission. In the research presented in this thesis, a cross-layer protocol based on MAC and routing protocols was designed in order to improve the capability of WSNs for a range of different applications. Simulation results, based on a range of realistic scenarios, show that these new protocols improve WSNs by reducing their energy consumption as well as enabling them to support mobile nodes, where necessary. A number of conference and journal papers have been published to disseminate these results for a range of applications.
Resumo:
In a general way, in an electric power utility the current transformers (CT) are used to measurement and protection of transmission lines (TL) 1 The Power Line Carriers systems (PLC) are used for communication between electrical substations and transmission line protection. However, with the increasing use of optical fiber to communication (due mainly to its high data transmission rate and low signal-noise relation) this application loses potentiality. Therefore, other functions must be defined to equipments that are still in using, one of them is detecting faults (short-circuits) and transmission lines insulator strings damages 2. The purpose of this paper is to verify the possibility of using the path to the ground offered by the CTs instead of capacitive couplings / capacitive potential transformers to detect damaged insulators, since the current transformers are always present in all transmission lines (TL's) bays. To this a comparison between this new proposal and the PLC previous proposed system 2 is shown, evaluating the economical and technical points of view. ©2010 IEEE.
Resumo:
The frequency spectrums are inefficiently utilized and cognitive radio has been proposed for full utilization of these spectrums. The central idea of cognitive radio is to allow the secondary user to use the spectrum concurrently with the primary user with the compulsion of minimum interference. However, designing a model with minimum interference is a challenging task. In this paper, a transmission model based on cyclic generalized polynomial codes discussed in [2] and [15], is proposed for the improvement in utilization of spectrum. The proposed model assures a non interference data transmission of the primary and secondary users. Furthermore, analytical results are presented to show that the proposed model utilizes spectrum more efficiently as compared to traditional models.