518 resultados para Détecteur à pixels


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample representativeness, and minimizing the effect of the presence of contaminants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman imaging spectroscopy is a highly useful analytical tool that provides spatial and spectral information on a sample. However, CCD detectors used in dispersive instruments present the drawback of being sensitive to cosmic rays, giving rise to spikes in Raman spectra. Spikes influence variance structures and must be removed prior to the use of multivariate techniques. A new algorithm for correction of spikes in Raman imaging was developed using an approach based on comparison of nearest neighbor pixels. The algorithm showed characteristics including simplicity, rapidity, selectivity and high quality in spike removal from hyperspectral images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Descriptors in multivariate image analysis applied to quantitative structure-activity relationship (MIA-QSAR) are pixels of bidimensional images of chemical structures (drawings), which were used to model the trichomonicidal activities of a series of benzimidazole derivatives. The MIA-QSAR model showed good predictive ability, with r², q² and r val. ext.² of 0.853, 0.519 and 0.778, respectively, which are comparable to the best values obtained by CoMFA e CoMSIA for the same series. A MIA-based analysis was also performed by using images of alphabetic letters with the corresponding numeric ordering as dependent variables, but no correlation was found, supporting that MIA-QSAR is not arbitrary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today several different unsupervised classification algorithms are commonly used to cluster similar patterns in a data set based only on its statistical properties. Specially in image data applications, self-organizing methods for unsupervised classification have been successfully applied for clustering pixels or group of pixels in order to perform segmentation tasks. The first important contribution of this paper refers to the development of a self-organizing method for data classification, named Enhanced Independent Component Analysis Mixture Model (EICAMM), which was built by proposing some modifications in the Independent Component Analysis Mixture Model (ICAMM). Such improvements were proposed by considering some of the model limitations as well as by analyzing how it should be improved in order to become more efficient. Moreover, a pre-processing methodology was also proposed, which is based on combining the Sparse Code Shrinkage (SCS) for image denoising and the Sobel edge detector. In the experiments of this work, the EICAMM and other self-organizing models were applied for segmenting images in their original and pre-processed versions. A comparative analysis showed satisfactory and competitive image segmentation results obtained by the proposals presented herein. (C) 2008 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article describes a method to turn astronomical imaging into a random number generator by using the positions of incident cosmic rays and hot pixels to generate bit streams. We subject the resultant bit streams to a battery of standard benchmark statistical tests for randomness and show that these bit streams are statistically the same as a perfect random bit stream. Strategies for improving and building upon this method are outlined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The demand for more pixels is beginning to be met as manufacturers increase the native resolution of projector chips. Tiling several projectors still offers a solution to augment the pixel capacity of a display. However, problems of color and illumination uniformity across projectors need to be addressed as well as the computer software required to drive such devices. We present the results obtained on a desktop-size tiled projector array of three D-ILA projectors sharing a common illumination source. A short throw lens (0.8:1) on each projector yields a 21-in. diagonal for each image tile; the composite image on a 3×1 array is 3840×1024 pixels with a resolution of about 80 dpi. The system preserves desktop resolution, is compact, and can fit in a normal room or laboratory. The projectors are mounted on precision six-axis positioners, which allow pixel level alignment. A fiber optic beamsplitting system and a single set of red, green, and blue dichroic filters are the key to color and illumination uniformity. The D-ILA chips inside each projector can be adjusted separately to set or change characteristics such as contrast, brightness, or gamma curves. The projectors were then matched carefully: photometric variations were corrected, leading to a seamless image. Photometric measurements were performed to characterize the display and are reported here. This system is driven by a small PC cluster fitted with graphics cards and running Linux. It can be scaled to accommodate an array of 2×3 or 3×3 projectors, thus increasing the number of pixels of the final image. Finally, we present current uses of the display in fields such as astrophysics and archaeology (remote sensing).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently Adams and Bischof (1994) proposed a novel region growing algorithm for segmenting intensity images. The inputs to the algorithm are the intensity image and a set of seeds - individual points or connected components - that identify the individual regions to be segmented. The algorithm grows these seed regions until all of the image pixels have been assimilated. Unfortunately the algorithm is inherently dependent on the order of pixel processing. This means, for example, that raster order processing and anti-raster order processing do not, in general, lead to the same tessellation. In this paper we propose an improved seeded region growing algorithm that retains the advantages of the Adams and Bischof algorithm fast execution, robust segmentation, and no tuning parameters - but is pixel order independent. (C) 1997 Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We re-mapped the soils of the Murray-Darling Basin (MDB) in 1995-1998 with a minimum of new fieldwork, making the most out of existing data. We collated existing digital soil maps and used inductive spatial modelling to predict soil types from those maps combined with environmental predictor variables. Lithology, Landsat Multi Spectral Scanner (Landsat MSS), the 9-s digital elevation model (DEM) of Australia and derived terrain attributes, all gridded to 250-m pixels, were the predictor variables. Because the basin-wide datasets were very large data mining software was used for modelling. Rule induction by data mining was also used to define the spatial domain of extrapolation for the extension of soil-landscape models from existing soil maps. Procedures to estimate the uncertainty associated with the predictions and quality of information for the new soil-landforms map of the MDB are described. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new conceptual model for soil pore-solid structure is formalized. Soil pore-solid structure is proposed to comprise spatially abutting elements each with a value which is its membership to the fuzzy set ''pore,'' termed porosity. These values have a range between zero (all solid) and unity (all pore). Images are used to represent structures in which the elements are pixels and the value of each is a porosity. Two-dimensional random fields are generated by allocating each pixel a porosity by independently sampling a statistical distribution. These random fields are reorganized into other pore-solid structural types by selecting parent points which have a specified local region of influence. Pixels of larger or smaller porosity are aggregated about the parent points and within the region of interest by controlled swapping of pixels in the image. This creates local regions of homogeneity within the random field. This is similar to the process known as simulated annealing. The resulting structures are characterized using one-and two-dimensional variograms and functions describing their connectivity. A variety of examples of structures created by the model is presented and compared. Extension to three dimensions presents no theoretical difficulties and is currently under development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

If the Internet could be used as a method of transmitting ultrasound images taken in the field quickly and effectively, it would bring tertiary consultation to even extremely remote centres. The aim of the study was to evaluate the maximum degree of compression of fetal ultrasound video-recordings that would not compromise signal quality. A digital fetal ultrasound videorecording of 90 s was produced, resulting in a file size of 512 MByte. The file was compressed to 2, 5 and 10 MByte. The recordings were viewed by a panel of four experienced observers who were blinded to the compression ratio used. Using a simple seven-point scoring system, the observers rated the quality of the clip on 17 items. The maximum compression ratio that was considered clinically acceptable was found to be 1:50-1:100. This produced final file sizes of 5-10 MByte, corresponding to a screen size of 320 x 240 pixels, running at 15 frames/s. This study expands the possibilities for providing tertiary perinatal services to the wider community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desenvolveu-se uma metodologia que permite obter o hidrograma de escoamento superficial e a vazão máxima para qualquer posição ao longo de uma encosta e para seções transversais de canais utilizando o modelo de ondas cinemáticas. A área da encosta é dividida num sistema matricial composto por 100 linhas e 100 colunas. Na encosta, considera-se que o escoamento ocorre na direção da declividade e que a vazão de cada pixel é a soma da vazão produzida nesse com a vazão advinda dos pixels que contribuem com o escoamento superficial para o pixel em análise. No canal, a vazão é calculada pela soma dos hidrogramas advindos das colunas do sistema reticulado. A comparação entre os valores de lâmina e vazão máxima de escoamento superficial obtidas experimentalmente e calculadas em duas condições (encosta e bacia) permitiu evidenciar que a metodologia, comparada aos métodos Racional e do Número da Curva, ofereceu boas estimativas tanto da lâmina quanto da vazão máxima de escoamento superficial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last years, it has become increasingly clear that neurodegenerative diseases involve protein aggregation, a process often used as disease progression readout and to develop therapeutic strategies. This work presents an image processing tool to automatic segment, classify and quantify these aggregates and the whole 3D body of the nematode Caenorhabditis Elegans. A total of 150 data set images, containing different slices, were captured with a confocal microscope from animals of distinct genetic conditions. Because of the animals’ transparency, most of the slices pixels appeared dark, hampering their body volume direct reconstruction. Therefore, for each data set, all slices were stacked in one single 2D image in order to determine a volume approximation. The gradient of this image was input to an anisotropic diffusion algorithm that uses the Tukey’s biweight as edge-stopping function. The image histogram median of this outcome was used to dynamically determine a thresholding level, which allows the determination of a smoothed exterior contour of the worm and the medial axis of the worm body from thinning its skeleton. Based on this exterior contour diameter and the medial animal axis, random 3D points were then calculated to produce a volume mesh approximation. The protein aggregations were subsequently segmented based on an iso-value and blended with the resulting volume mesh. The results obtained were consistent with qualitative observations in literature, allowing non-biased, reliable and high throughput protein aggregates quantification. This may lead to a significant improvement on neurodegenerative diseases treatment planning and interventions prevention

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dental implant recognition in patients without available records is a time-consuming and not straightforward task. The traditional method is a complete user-dependent process, where the expert compares a 2D X-ray image of the dental implant with a generic database. Due to the high number of implants available and the similarity between them, automatic/semi-automatic frameworks to aide implant model detection are essential. In this study, a novel computer-aided framework for dental implant recognition is suggested. The proposed method relies on image processing concepts, namely: (i) a segmentation strategy for semi-automatic implant delineation; and (ii) a machine learning approach for implant model recognition. Although the segmentation technique is the main focus of the current study, preliminary details of the machine learning approach are also reported. Two different scenarios are used to validate the framework: (1) comparison of the semi-automatic contours against implant’s manual contours of 125 X-ray images; and (2) classification of 11 known implants using a large reference database of 601 implants. Regarding experiment 1, 0.97±0.01, 2.24±0.85 pixels and 11.12±6 pixels of dice metric, mean absolute distance and Hausdorff distance were obtained, respectively. In experiment 2, 91% of the implants were successfully recognized while reducing the reference database to 5% of its original size. Overall, the segmentation technique achieved accurate implant contours. Although the preliminary classification results prove the concept of the current work, more features and an extended database should be used in a future work.