955 resultados para Cyclic Voltammetry
Resumo:
The electrochemical reduction of oxygen in two different room-temperature ionic liquids, 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide ([EMIM][N(Tf)(2)]) and hexyltriethylammonium bis((trifluoromethyl)sulfonyl)imide ([N-6222][N(Tf)(2)]) was investigated by cyclic voltammetry at a gold microdisk electrode. Chronoamperometric measurements were made to determine the diffusion coefficient, D, and concentration, c, of the electroactive oxygen dissolved in the ionic liquid by fitting experimental transients to the Aoki model. [Aoki, K.; et al. J. Electroanal. Chem. 1981, 122, 19]. A theory and simulation designed for cyclic voltammetry at microdisk electrodes was then employed to determine the diffusion coefficient of the electrogenerated superoxide species, O-2(.-), as well as compute theoretical voltammograms to confirm the values of D and c for neutral oxygen obtained from the transients. As expected, the diffusion coefficient of the superoxide species was found to be smaller than that of the oxygen in both ionic liquids. The diffusion coefficients of O-2 and O-2(.-) in [N-6222][N(Tf)(2)], however, differ by more than a factor of 30 (D-O2 = 1.48 x 10(-10) m(2) s(-1), DO2.- = 4.66 x 10(-12) m(2) s(-1)), whereas they fall within the same order of magnitude in [EMIM][N(Tf)(2)] (D-O2 = 7.3 x 10(-10) m(2) s(-1), DO2.- = 2.7 x 10(-10) m(2) s(-1)). This difference in [N-6222][N(Tf)(2)] causes pronounced asymmetry in the concentration distributions of oxygen and superoxide, resulting in significant differences in the heights of the forward and back peaks in the cyclic voltammograms for the reduction of oxygen. This observation is most likely a result of the higher viscosity of [N-6222][N(Tf)(2)] in comparison to [EMIM][N(Tf)(2)], due to the structural differences in cationic component.
Resumo:
The redox potentials of 25 cyclic nitroxides from four different structural classes (pyrrolidine, piperidine, isoindoline, and azaphenalene) were determined experimentally by cyclic voltammetry in acetonitrile, and also via high-level ab initio molecular orbital calculations. It is shown that the potentials are influenced by the type of ring system, ring substituents and/or groups surrounding the radical moiety. For the pyrrolidine, piperidine, and isoindolines there is excellent agreement (mean absolute deviation of 0.05 V) between the calculated and experimental oxidation potentials; for the azaphenalenes, however, there is an extraordinary discrepancy (mean absolute deviation of 0.60 V), implying that their one-electron oxidation might involve additional processes not considered in the theoretical calculations. This recently developed azaphenalene class of nitroxide represents a new variant of a nitroxide ring fused to an aromatic system and details of the synthesis of five derivatives involving differing aryl substitution are also presented.
Resumo:
To improve the reproducibility, stability, and sensitivity of bismuth film electrode (BiFE), we studied the performances of a mixed coating of two cation-exchange polymers, Nafion (NA) and poly(sodium 4-styrenesulfonate) (PSS), modified glassy carbon BiFE (GC/NA-PSS/BiFE). The characteristics of GC/NA-PSS/BiFE were investigated by scanning electron microscopy and cyclic voltammetry. Various parameters were studied in terms of their effect on the anodic stripping voltarnmetry (ASV) signals. Under optimized conditions, the limits of detection were 71 ng L-1 for Cd(II) and 93 ng L-1 for Pb(II) with a 10 min preconcentration. The results exhibited that GC/NA-PSS/BiFE can be a reproducible and robust toot for monitor of trace metals by ASV rapidly and environmentally friendly, even in the presence of surface-active compounds.
Resumo:
The anodic voltammetric behavior of dipyridamole (DPM) in the presence of various electrolytes was studetd by direct-current voltammetry, differential-pulse voltammetry and cyclic voltammetry at a glassy carbon electrode. In a medium of 0.01 mol/L HCl, an oxidative peak of dipyridamole was obtained. The peak potential is at about 0.62 V(vs.Ag/AgCl). The peak current is linearly increased with the concentration of dipyridamole over the range of 0.05 similar to 10 mg/L. The method has been used for the direct determination of dipyridamole in tablets. The recoveries of dipyridamole in urine samples are 89%. Experimental results proved that the electrode reaction was diffustion controlled and irreversible.
Resumo:
Plussian blue(PB)/Pt modified electrode Tvas studied in the CdCl2 electrolyte solution by cyclic voltammetry and in situ FTIR spectroelectrochemistry. It was found that Cadmium ion was capable of substituting the high-spin iron of PB in an electrochemically induced substitution reaction and hexacyanoferrate cadmium (CdHCF) can be formed in the PB film. But PB and CdHCF in mixture film showed their own electrochemistry properties without serious effect on each other. The mechanism of substitution reaction has been given in detail.
Resumo:
The electrochemistry of Prussian blue mixed in a polymer medium containing MClO4 (M = Li+, Na+, K+, TBA(+)) as the supporting electrolyte was studied by means of solid-state voltammetry. This approach is new in Prussian blue studies. The behavior of PB in polymer electrolytes is somewhat similar to the well-known behavior for an electrochemically synthesized PB film in aqueous media. Besides, K+, Li+ and Na+ ions can also transport through the crystal of PB because of its zeolitic nature. The transport of TBA(+) ions is possible. Kinetic control lies in the diffusion of cations in and out of the lattice of Prussian blue. Reduction waves of Prussian blue depend on both the size and type of cations. PB is very stable upon electrochemical cycling in polymer electrolytes and air. This system may be used in rechargeable batteries and electrochromic devices.
Resumo:
The diffusion rates of seven ferrocene derivatives have been estimated in polyelectrolyte PEG . LiClO4 by using non-steady-state chronoamperometry. The D-app of ferrocene derivatives increases with temperature, and the dependency of D-app on temperature obeys the Arrhenius equation. The D-app of ferrocene derivatives decreases with increasing size of electroactive species. The Delta D-app values of D-T>Tm and D-T
Resumo:
Quinine derivatives, quinine hydrochloride and 8-hydroxyquinoline, transfer across the water/nitrobenzene interface was studied by cyclic voltammetry. The effect of solution acidity on the transfer behaviour was observed. Transfer mechanism was discussed
Resumo:
The behaviour of the electroplated copper film electrode on tin oxide/glass or glassy carbon surface was studied in potassium hydroxide medium by cyclic voltammetry and in situ transmission spectroelectrochemistry. The results indicate that the electroplated copper film electrode is similar to a copper electrode and cyclic voltammetry with this electrode affords more resolution. The anodic peaks were found to correspond successively to the adsorption of oxygen, the formation of a surface layer of Cu2O, the formation of a surface layer of Cu(OH)2 or CuO and formation of a thick multilayer film of CuO. This is the first time it has been proposed that a surface layer of Cu(OH)2 or CuO is formed from the oxidation of the surface layer of Cu2O. Similarly, a clear interpretation is presented that the cathodic peaks correspond successively to the reduction of CuO to Cu2O, the reductions of Cu2O to Cu and the soluble Cu(II) species to Cu. On the other hand, a shoulder peak related to the chemical transformation of Cu(OH)2 to CuO was first observed.
Resumo:
The transfer behavior of alkali motal ions K~+ and Na~+ across the interfaces of water/nitrobenzene and water/1, 2-dichloroethane facilitated by Triton X-100 is investigated by cyclic voltammetry with four electrodes. The equations of interfacial half-wave potential derived in terms of the mechanism proposed isverified by the experimental data and consistent with the practical △_0~wφ_p-pM curves.
Resumo:
Asymmetric MarcusHush (AMH) theory is applied for the first time in ionic solvents to model the voltammetric reduction of oxygen in 1-butyl-1-methylpyrrolidinium bis-(trifluoromethylsulfonyl)-imide and of 2-nitrotoluene (2-NT), nitrocyclopentane (NCP), and 1-nitro-butane (BuN) in trihexyltetradecylphosphonium tris(pentafluoroethyl)trifluorophosphate on a gold microdisc electrode. An asymmetry parameter, gamma, was estimated for all systems as -0.4 for the reduction of oxygen and -0.05, 0.25, and 0 +/- 0.05 for the reductions of 2-NT, NCP, and BuN, respectively, which suggests equal force constants of reactants and products in the case of 2-NT and BuN and unequal force constants for oxygen and NCP where the force constants of the oxidized species are greater than the reduced species in the case of oxygen and less than the reduced species in the case of NCP. Previously measured values for a, the Butler-Volmer transfer coefficient, reflect this in each case. Where appreciable asymmetry occurs, AMH theory was seen to parametrize the experimental data better than either Butler-Volmer or symmetric Marcus-Hush theory, allowing additionally the extraction of reorganization energy. This is the first study to provide key physical insights into electrochemical systems in room-temperature ionic liquids using AMH theory, allowing elucidation of the reorganization energies and the relative force constants of the reactants and products in each reaction.
Resumo:
Microelectrode cyclic voltammetry (MV) has been employed to investigate the micellar properties of solutions of homologous alkyltrimethylammonium bromides, RMe(3)ABr, R = C(10), C(12), and C(14), in water and in the presence of added NaBr. The micellar self-diffusion coefficient was calculated from the limiting current for the reversible electron transfer of micelle-bound ferrocene. From the values of this property, other parameters were calculated, including the micellar hydrodynamic radius, RH, and aggregation number, N(agg); the latter was also theoretically calculated. We determined the values of the diffusion coefficient as a function of various experimental variables and observed the following trends: The diffusion coefficient decreases as a function of increasing surfactant concentration (no additional electrolyte added); it decreases as a function of increasing surfactant concentration at fixed NaBr concentration; and it shows a complex dependence (increase then decrease) on the NaBr concentration at a fixed RMe(3)ABr concentration. The value of the intermicellar interaction parameter decreases and then increases as a function of increasing NaBr concentration. These results are discussed in terms of intermicellar,interactions and the effect of NaBr on the micellar surface charge density and sphere-to-rod geometry change. The NaBr concentration required to induce the latter change increases rapidly as a function of decreasing the length of R: no geometry change was detected for C(10)Me(3)ABr. Values of N(agg) increase as I function of increasing the length of R and are in good agreement with both literature values and values that were calculated theoretically. Thus, MV is a convenient and simple technique for obtaining fundamental properties of surfactant solutions, including additive-induced changes of micellar parameters (N(agg)) and morphology changes.
Resumo:
The electrochemical oxidation of promethazine hydrochloride was made on highly boron-doped diamond electrodes. Cyclic voltammetry experiments showed that the oxidation mechanisms involved the formation of an adsorbed product that is more readily oxidized, producing a new peak with lower potential values whose intensity can be increased by applying the accumulation potential for given times. The parameters were optimized and the highest current intensities were obtained by applying +0.78 V for 30 seconds. The square-wave adsorptive voltammetry results obtained in BR buffer showed two well-defined peaks, dependent on the pH and on the voltammetric parameters. The best responses were obtained at pH 4.0, frequency of 50 s(-1), step of 2 mV, and amplitude of 50 mV. Under these conditions, linear responses were obtained for concentrations from 5.96 x 10(-7) to 4.76 x 10(-6) mol L-1, and calculated detection limits of 2.66 x 10(-8) mol L-1 (8.51 mu g L-1) for peak 1 and of 4.61 x 10(-8) mol L-1 (14.77 mu g L-1) for peak 2. The precision and accuracy were evaluated by repeatability and reproducibility experiments, which yielded values of less than 5.00% for both voltammetric peaks. ne applicability of this procedure was tested on commercial formulations of promethazine hydrochloride by observing the stability, specificity, recovery and precision of the procedure in complex samples. All results obtained were compared to recommended procedure by British Pharmacopeia. The voltammetric results indicate that the proposed procedure is stable and sensitive, with good reproducibility even when the accumulation steps involve short times. It is therefore very suitable for the development of the electroanalytical procedure, providing adequate sensitivity and a reliable method.