939 resultados para Cyber Physical System, Semantic Web, SPARQL, CHIRON, Android, RDF, Ontologia, Sensori, Telemedicina
Resumo:
In this paper we present, LEAPS, a Semantic Web and Linked data framework for searching and visualising datasets from the domain of Algal biomass. LEAPS provides tailored interfaces to explore algal biomass datasets via REST services and a SPARQL endpoint for stakeholders in the domain of algal biomass. The rich suite of datasets include data about potential algal biomass cultivation sites, sources of CO2, the pipelines connecting the cultivation sites to the CO2 sources and a subset of the biological taxonomy of algae derived from the world's largest online information source on algae.
Resumo:
As the Semantic Web is an open, complex and constantly evolving medium, it is the norm, but not exception that information at different sites is incomplete or inconsistent. This poses challenges for the engineering and development of agent systems on the Semantic Web, since autonomous software agents need to understand, process and aggregate this information. Ontology language OWL provides core language constructs to semantically markup resources on the Semantic Web, on which software agents interact and cooperate to accomplish complex tasks. However, as OWL was designed on top of (a subset of) classic predicate logic, it lacks the ability to reason about inconsistent or incomplete information. Belief-augmented Frames (BAF) is a frame-based logic system that associates with each frame a supporting and a refuting belief value. In this paper, we propose a new ontology language Belief-augmented OWL (BOWL) by integrating OWL DL and BAF to incorporate the notion of confidence. BOWL is paraconsistent, hence it can perform useful reasoning services in the presence of inconsistencies and incompleteness. We define the abstract syntax and semantics of BOWL by extending those of OWL. We have proposed reasoning algorithms for various reasoning tasks in the BOWL framework and we have implemented the algorithms using the constraint logic programming framework. One example in the sensor fusion domain is presented to demonstrate the application of BOWL.
Resumo:
Postprint
Resumo:
Text summarization has been studied for over a half century, but traditional methods process texts empirically and neglect the fundamental characteristics and principles of language use and understanding. Automatic summarization is a desirable technique for processing big data. This reference summarizes previous text summarization approaches in a multi-dimensional category space, introduces a multi-dimensional methodology for research and development, unveils the basic characteristics and principles of language use and understanding, investigates some fundamental mechanisms of summarization, studies dimensions on representations, and proposes a multi-dimensional evaluation mechanism. Investigation extends to incorporating pictures into summary and to the summarization of videos, graphs and pictures, and converges to a general summarization method. Further, some basic behaviors of summarization are studied in the complex cyber-physical-social space. Finally, a creative summarization mechanism is proposed as an effort toward the creative summarization of things, which is an open process of interactions among physical objects, data, people, and systems in cyber-physical-social space through a multi-dimensional lens of semantic computing. The insights can inspire research and development of many computing areas.
Resumo:
Cyber-physical systems tightly integrate physical processes and information and communication technologies. As today’s critical infrastructures, e.g., the power grid or water distribution networks, are complex cyber-physical systems, ensuring their safety and security becomes of paramount importance. Traditional safety analysis methods, such as HAZOP, are ill-suited to assess these systems. Furthermore, cybersecurity vulnerabilities are often not considered critical, because their effects on the physical processes are not fully understood. In this work, we present STPA-SafeSec, a novel analysis methodology for both safety and security. Its results show the dependencies between cybersecurity vulnerabilities and system safety. Using this information, the most effective mitigation strategies to ensure safety and security of the system can be readily identified. We apply STPA-SafeSec to a use case in the power grid domain, and highlight its benefits.
Resumo:
Resilience is widely accepted as a desirable system property for cyber-physical systems. However, there are no metrics that can be used to measure the resilience of cyber-physical systems (CPS) while the multi-dimensional nature of performance in these systems is considered. In this work, we present first results towards a resilience metric framework. The key contributions of this framework are threefold: First, it allows to evaluate resilience with respect to different performance indicators that are of interest. Second, complexities that are relevant to the performance indicators of interest, can be intentionally abstracted. Third and final, it supports the identification of reasons for good or bad resilience to improve system design.
Resumo:
The main drivers for the development and evolution of Cyber Physical Systems (CPS) are the reduction of development costs and time along with the enhancement of the designed products. The aim of this survey paper is to provide an overview of different types of system and the associated transition process from mechatronics to CPS and cloud-based (IoT) systems. It will further consider the requirement that methodologies for CPS-design should be part of a multi-disciplinary development process within which designers should focus not only on the separate physical and computational components, but also on their integration and interaction. Challenges related to CPS-design are therefore considered in the paper from the perspectives of the physical processes, computation and integration respectively. Illustrative case studies are selected from different system levels starting with the description of the overlaying concept of Cyber Physical Production Systems (CPPSs). The analysis and evaluation of the specific properties of a sub-system using a condition monitoring system, important for the maintenance purposes, is then given for a wind turbine.
Resumo:
Part 7: Cyber-Physical Systems
Resumo:
Question Answering systems that resort to the Semantic Web as a knowledge base can go well beyond the usual matching words in documents and, preferably, find a precise answer, without requiring user help to interpret the documents returned. In this paper, the authors introduce a Dialogue Manager that, through the analysis of the question and the type of expected answer, provides accurate answers to the questions posed in Natural Language. The Dialogue Manager not only represents the semantics of the questions, but also represents the structure of the discourse, including the user intentions and the questions context, adding the ability to deal with multiple answers and providing justified answers. The authors’ system performance is evaluated by comparing with similar question answering systems. Although the test suite is slight dimension, the results obtained are very promising.
Resumo:
My doctoral research is about the modelling of symbolism in the cultural heritage domain, and on connecting artworks based on their symbolism through knowledge extraction and representation techniques. In particular, I participated in the design of two ontologies: one models the relationships between a symbol, its symbolic meaning, and the cultural context in which the symbol symbolizes the symbolic meaning; the second models artistic interpretations of a cultural heritage object from an iconographic and iconological (thus also symbolic) perspective. I also converted several sources of unstructured data, a dictionary of symbols and an encyclopaedia of symbolism, and semi-structured data, DBpedia and WordNet, to create HyperReal, the first knowledge graph dedicated to conventional cultural symbolism. By making use of HyperReal's content, I showed how linked open data about cultural symbolism could be utilized to initiate a series of quantitative studies that analyse (i) similarities between cultural contexts based on their symbologies, (ii) broad symbolic associations, (iii) specific case studies of symbolism such as the relationship between symbols, their colours, and their symbolic meanings. Moreover, I developed a system that can infer symbolic, cultural context-dependent interpretations from artworks according to what they depict, envisioning potential use cases for museum curation. I have then re-engineered the iconographic and iconological statements of Wikidata, a widely used general-domain knowledge base, creating ICONdata: an iconographic and iconological knowledge graph. ICONdata was then enriched with automatic symbolic interpretations. Subsequently, I demonstrated the significance of enhancing artwork information through alignment with linked open data related to symbolism, resulting in the discovery of novel connections between artworks. Finally, I contributed to the creation of a software application. This application leverages established connections, allowing users to investigate the symbolic expression of a concept across different cultural contexts through the generation of a three-dimensional exhibition of artefacts symbolising the chosen concept.
Resumo:
Personal archives are the archives created by individuals for their own purposes. Among these are the library and documentary collections of writers and scholars. It is only recently that archival literature has begun to focus on this category of archives, emphasising how their heterogeneous nature necessitates the conciliation of different approaches to archival description, and calling for a broader understanding of the principle of provenance, recognising that multiple creators, including subsequent researchers, can contribute to shaping personal archives over time by adding new layers of contexts. Despite these advances in the theoretical debate, current architectures for archival representation remain behind. Finding aids privilege a single point of view and do not allow subsequent users to embed their own, potentially conflicting, readings. Using semantic web technologies this study aims to define a conceptual model for writers' archives based on existing and widely adopted models in the cultural heritage and humanities domains. The model developed can be used to represent different types of documents at various levels of analysis, as well as record content and components. It also enables the representation of complex relationships and the incorporation of additional layers of interpretation into the finding aid, transforming it from a static search tool into a dynamic research platform. The personal archive and library of Giuseppe Raimondi serves as a case study for the creation of an archival knowledge base using the proposed conceptual model. By querying the knowledge graph through SPARQL, the effectiveness of the model is evaluated. The results demonstrate that the model addresses the primary representation challenges identified in archival literature, from both a technological and methodological standpoint. The ultimate goal is to bring the output par excellence of archival science, i.e. the finding aid, more in line with the latest developments in archival thinking.
Resumo:
Localization is a fundamental task in Cyber-Physical Systems (CPS), where data is tightly coupled with the environment and the location where it is generated. The research literature on localization has reached a critical mass, and several surveys have also emerged. This review paper contributes on the state-of-the-art with the proposal of a new and holistic taxonomy of the fundamental concepts of localization in CPS, based on a comprehensive analysis of previous research works and surveys. The main objective is to pave the way towards a deep understanding of the main localization techniques, and unify their descriptions. Furthermore, this review paper provides a complete overview on the most relevant localization and geolocation techniques. Also, we present the most important metrics for measuring the accuracy of localization approaches, which is meant to be the gap between the real location and its estimate. Finally, we present open issues and research challenges pertaining to localization. We believe that this review paper will represent an important and complete reference of localization techniques in CPS for researchers and practitioners and will provide them with an added value as compared to previous surveys.
Resumo:
In this paper, we focus on large-scale and dense Cyber- Physical Systems, and discuss methods that tightly integrate communication and computing with the underlying physical environment. We present Physical Dynamic Priority Dominance ((PD)2) protocol that exemplifies a key mechanism to devise low time-complexity communication protocols for large-scale networked sensor systems. We show that using this mechanism, one can compute aggregate quantities such as the maximum or minimum of sensor readings in a time-complexity that is equivalent to essentially one message exchange. We also illustrate the use of this mechanism in a more complex task of computing the interpolation of smooth as well as non-smooth sensor data in very low timecomplexity.
Resumo:
We use the term Cyber-Physical Systems to refer to large-scale distributed sensor systems. Locating the geographic coordinates of objects of interest is an important problemin such systems. We present a new distributed approach to localize objects and events of interest in time complexity independent of number of nodes.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática.