990 resultados para Cutting stock problem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we deal with the one-dimensional integer cutting stock problem, which consists of cutting a set of available objects in stock in order to produce ordered smaller items in such a way as to optimize a given objective function, which in this paper is composed of three different objectives: minimization of the number of objects to be cut (raw material), minimization of the number of different cutting patterns (setup time), minimization of the number of saw cycles (optimization of the saw productivity). For solving this complex problem we adopt a multiobjective approach in which we adapt, for the problem studied, a symbiotic genetic algorithm proposed in the literature. Some theoretical and computational results are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia de Produção - FEB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this thesis is to contribute to the development of new, exact solution approaches to different combinatorial optimization problems. In particular, we derive dedicated algorithms for a special class of Traveling Tournament Problems (TTPs), the Dial-A-Ride Problem (DARP), and the Vehicle Routing Problem with Time Windows and Temporal Synchronized Pickup and Delivery (VRPTWTSPD). Furthermore, we extend the concept of using dual-optimal inequalities for stabilized Column Generation (CG) and detail its application to improved CG algorithms for the cutting stock problem, the bin packing problem, the vertex coloring problem, and the bin packing problem with conflicts. In all approaches, we make use of some knowledge about the structure of the problem at hand to individualize and enhance existing algorithms. Specifically, we utilize knowledge about the input data (TTP), problem-specific constraints (DARP and VRPTWTSPD), and the dual solution space (stabilized CG). Extensive computational results proving the usefulness of the proposed methods are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Case studies in copper-alloy rolling mill companies showed that existing planning systems suffer from numerous shortcomings. Where computerised systems are in use, these tend to simply emulate older manual systems and still rely heavily on modification by experienced planners on the shopfloor. As the size and number of orders increase, the task of process planners, while seeking to optimise the manufacturing objectives and keep within the production constraints, becomes extremely complicated because of the number of options for mixing or splitting the orders into batches. This thesis develops a modular approach to computerisation of the production management and planning functions. The full functional specification of each module is discussed, together with practical problems associated with their phased implementation. By adapting the Distributed Bill of Material concept from Material Requirements Planning (MRP) philosophy, the production routes generated by the planning system are broken down to identify the rolling stages required. Then to optimise the use of material at each rolling stage, the system generates an optimal cutting pattern using a new algorithm that produces practical solutions to the cutting stock problem. It is shown that the proposed system can be accommodated on a micro-computer, which brings it into the reach of typical companies in the copper-alloy rolling industry, where profit margins are traditionally low and the cost of widespread use of mainframe computers would be prohibitive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los problemas de corte y empaquetado son una familia de problemas de optimización combinatoria que han sido ampliamente estudiados en numerosas áreas de la industria y la investigación, debido a su relevancia en una enorme variedad de aplicaciones reales. Son problemas que surgen en muchas industrias de producción donde se debe realizar la subdivisión de un material o espacio disponible en partes más pequeñas. Existe una gran variedad de métodos para resolver este tipo de problemas de optimización. A la hora de proponer un método de resolución para un problema de optimización, es recomendable tener en cuenta el enfoque y las necesidades que se tienen en relación al problema y su solución. Las aproximaciones exactas encuentran la solución óptima, pero sólo es viable aplicarlas a instancias del problema muy pequeñas. Las heurísticas manejan conocimiento específico del problema para obtener soluciones de alta calidad sin necesitar un excesivo esfuerzo computacional. Por otra parte, las metaheurísticas van un paso más allá, ya que son capaces de resolver una clase muy general de problemas computacionales. Finalmente, las hiperheurísticas tratan de automatizar, normalmente incorporando técnicas de aprendizaje, el proceso de selección, combinación, generación o adaptación de heurísticas más simples para resolver eficientemente problemas de optimización. Para obtener lo mejor de estos métodos se requiere conocer, además del tipo de optimización (mono o multi-objetivo) y el tamaño del problema, los medios computacionales de los que se dispone, puesto que el uso de máquinas e implementaciones paralelas puede reducir considerablemente los tiempos para obtener una solución. En las aplicaciones reales de los problemas de corte y empaquetado en la industria, la diferencia entre usar una solución obtenida rápidamente y usar propuestas más sofisticadas para encontrar la solución óptima puede determinar la supervivencia de la empresa. Sin embargo, el desarrollo de propuestas más sofisticadas y efectivas normalmente involucra un gran esfuerzo computacional, que en las aplicaciones reales puede provocar una reducción de la velocidad del proceso de producción. Por lo tanto, el diseño de propuestas efectivas y, al mismo tiempo, eficientes es fundamental. Por esta razón, el principal objetivo de este trabajo consiste en el diseño e implementación de métodos efectivos y eficientes para resolver distintos problemas de corte y empaquetado. Además, si estos métodos se definen como esquemas lo más generales posible, se podrán aplicar a diferentes problemas de corte y empaquetado sin realizar demasiados cambios para adaptarlos a cada uno. Así, teniendo en cuenta el amplio rango de metodologías de resolución de problemas de optimización y las técnicas disponibles para incrementar su eficiencia, se han diseñado e implementado diversos métodos para resolver varios problemas de corte y empaquetado, tratando de mejorar las propuestas existentes en la literatura. Los problemas que se han abordado han sido: el Two-Dimensional Cutting Stock Problem, el Two-Dimensional Strip Packing Problem, y el Container Loading Problem. Para cada uno de estos problemas se ha realizado una amplia y minuciosa revisión bibliográfica, y se ha obtenido la solución de las distintas variantes escogidas aplicando diferentes métodos de resolución: métodos exactos mono-objetivo y paralelizaciones de los mismos, y métodos aproximados multi-objetivo y paralelizaciones de los mismos. Los métodos exactos mono-objetivo aplicados se han basado en técnicas de búsqueda en árbol. Por otra parte, como métodos aproximados multi-objetivo se han seleccionado unas metaheurísticas multi-objetivo, los MOEAs. Además, para la representación de los individuos utilizados por estos métodos se han empleado codificaciones directas mediante una notación postfija, y codificaciones que usan heurísticas de colocación e hiperheurísticas. Algunas de estas metodologías se han mejorado utilizando esquemas paralelos haciendo uso de las herramientas de programación OpenMP y MPI.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis deals with an investigation of Decomposition and Reformulation to solve Integer Linear Programming Problems. This method is often a very successful approach computationally, producing high-quality solutions for well-structured combinatorial optimization problems like vehicle routing, cutting stock, p-median and generalized assignment . However, until now the method has always been tailored to the specific problem under investigation. The principal innovation of this thesis is to develop a new framework able to apply this concept to a generic MIP problem. The new approach is thus capable of auto-decomposition and autoreformulation of the input problem applicable as a resolving black box algorithm and works as a complement and alternative to the normal resolving techniques. The idea of Decomposing and Reformulating (usually called in literature Dantzig and Wolfe Decomposition DWD) is, given a MIP, to convexify one (or more) subset(s) of constraints (slaves) and working on the partially convexified polyhedron(s) obtained. For a given MIP several decompositions can be defined depending from what sets of constraints we want to convexify. In this thesis we mainly reformulate MIPs using two sets of variables: the original variables and the extended variables (representing the exponential extreme points). The master constraints consist of the original constraints not included in any slaves plus the convexity constraint(s) and the linking constraints(ensuring that each original variable can be viewed as linear combination of extreme points of the slaves). The solution procedure consists of iteratively solving the reformulated MIP (master) and checking (pricing) if a variable of reduced costs exists, and in which case adding it to the master and solving it again (columns generation), or otherwise stopping the procedure. The advantage of using DWD is that the reformulated relaxation gives bounds stronger than the original LP relaxation, in addition it can be incorporated in a Branch and bound scheme (Branch and Price) in order to solve the problem to optimality. If the computational time for the pricing problem is reasonable this leads in practice to a stronger speed up in the solution time, specially when the convex hull of the slaves is easy to compute, usually because of its special structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Rural Postman Problem (RPP) is a particular Arc Routing Problem (ARP) which consists of determining a minimum cost circuit on a graph so that a given subset of required edges is traversed. The RPP is an NP-hard problem with significant real-life applications. This paper introduces an original approach based on Memetic Algorithms - the MARP algorithm - to solve the RPP and, also deals with an interesting Industrial Application, which focuses on the path optimization for component cutting operations. Memetic Algorithms are a class of Metaheuristics which may be seen as a population strategy that involves cooperation and competition processes between population elements and integrates “social knowledge”, using a local search procedure. The MARP algorithm is tested with different groups of instances and the results are compared with those gathered from other publications. MARP is also used in the context of various real-life applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigates properties of integer programming models for a class of production planning problems. The models are developed within a decision support system to advise a sales team of the products on which to focus their efforts in gaining new orders in the short term. The products generally require processing on several manufacturing cells and involve precedence relationships. The cells are already (partially) committed with products for stock and to satisfy existing orders and therefore only the residual capacities of each cell in each time period of the planning horizon are considered. The determination of production recommendations to the sales team that make use of residual capacities is a nontrivial optimization problem. Solving such models is computationally demanding and techniques for speeding up solution times are highly desirable. An integer programming model is developed and various preprocessing techniques are investigated and evaluated. In addition, a number of cutting plane approaches have been applied. The performance of these approaches which are both general and application specific is examined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, a dynamic programming approach to deal with the unconstrained two-dimensional non-guillotine cutting problem is presented. The method extends the recently introduced recursive partitioning approach for the manufacturer's pallet loading problem. The approach involves two phases and uses bounds based on unconstrained two-staged and non-staged guillotine cutting. The method is able to find the optimal cutting pattern of a large number of pro blem instances of moderate sizes known in the literature and a counterexample for which the approach fails to find known optimal solutions was not found. For the instances that the required computer runtime is excessive, the approach is combined with simple heuristics to reduce its running time. Detailed numerical experiments show the reliability of the method. Journal of the Operational Research Society (2012) 63, 183-200. doi: 10.1057/jors.2011.6 Published online 17 August 2011

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a new cake−cutting procedure which guarantees everybody a proportional share according to his own valuation.