978 resultados para Cutting parameters


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cutting tools less than 2mm diameter can be considered as micro-tool. Microtools are used in variety of applications where precision and accuracy are indispensable. In micro-machining operations, a small amount of material is removed and very small cutting forces are created. The small cross sectional area of the micro-tools drastically reduces their strength and makes their useful life short and unpredictable; so cutting parameters should be selected carefully to avoid premature tool breakage. The main objective of this study is to develop new techniques to select the optimal cutting conditions with minimum number of experiments and to evaluate the tool wear in machining operations. Several experimental setups were prepared and used to investigate the characteristics of cutting force and AE signals during the micro-end-milling of different materials including steel, aluminum and graphite electrodes. The proposed optimal cutting condition selection method required fewer experiments than conventional approaches and avoided premature tool breakage. The developed tool wear monitoring technique estimated the used tool life with ±10% accuracy from the machining data collected during the end-milling of non-metal materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During a machining process, cutting parameters must be taken into account, since depending on them the cutting edge starts to wear out to the point that tool can fail and needs to be change, which increases the cost and time of production. Since wear is a negative phenomenon on the cutting tool, due to the fact that tool life is reduced, it is important to optimize the cutting variables to be used during the machining process, in order to increase tool life. This research is focused on the influence of cutting parameters such as cutting speed, feed per tooth and axial depth of cut on tool wear during a face milling operation. The Taguchi method is applied in this study, since it uses a special design of orthogonal array to study the entire parameters space, with only few numbers of experiments. Also a relationship between tool wear and the cutting parameters is presented. For the studies, a martensitic 416 stainless steel was selected, due to the importance of this material in the machining of valve parts and pump shafts. Copyright © 2009 by ASME.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La performance d’un produit de finition sur le bois est influencée par la manière dont la surface est préparée. Le ponçage est très utilisé pour préparer les surfaces lors de la finition. Toutefois, ce procédé génère une grande quantité de poussières. Ainsi, les effets des procédés d’usinage sur les propriétés de surface, la performance d’un vernis et l’émission de poussières ont été étudiés dans le but de déterminer les modes de préparation des surfaces les plus adéquats pour le bois de chêne rouge. Dans un premier volet, les propriétés de surface et la performance d’un vernis ont été évaluées sur les surfaces préparées à l’aide du procédé traditionnel de ponçage et de trois procédés alternatifs de rabotage soit la coupe périphérique droite, la coupe hélicoïdale et la coupe oblique. La qualité de surface a été évaluée au moyen des caractéristiques de rugosité, d’endommagement cellulaire et de mouillabilité. Des essais de résistance à l’adhésion d’un vernis d’usage intérieur ont été effectués avant et après un traitement de vieillissement accéléré. Les résultats ont montré que le ponçage a induit une rugosité et un niveau de fibrillation supérieurs à ceux des autres procédés, ainsi qu’une mouillabilité et une adhésion du vernis après vieillissement accéléré élevées. Les surfaces rabotées avec la coupe périphérique droite ont présenté un certain niveau de fibrillation, une rugosité et une mouillabilité intermédiaires. Néanmoins, l’adhésion du vernis après vieillissement a été également inférieure par rapport aux autres procédés. La coupe hélicoïdale a produit une rugosité intermédiaire. D’autre part, la coupe oblique a été le procédé qui a présenté une perte d’adhésion après vieillissement similaire au ponçage. Ce procédé a généré des surfaces lisses avec rugosité et mouillabilité intermédiaires. Sur la base des résultats obtenus, le ponçage à l’aide d’un programme P100-grain et une vitesse d’avance de 7 m/min, la coupe périphérique droite avec un angle d’attaque de 25° et une onde d’usinage de 1,0 mm, la coupe hélicoïdale avec une onde d’usinage de 1,0 mm et la coupe oblique realisé avec un angle oblique de 15° ont permis d’obtenir les meilleures conditions d’usinage pour chaque procédé. Dans un deuxième volet, l’effet de différents paramètres de coupe sur l’émission de poussières et la rugosité de la surface a été étudié lors de la coupe hélicoïdale. Les émissions de poussières ont diminué avec la diminution de laprofondeur de coupe et l’augmentation de l’épaisseur moyenne du copeau. Cependant, les surfaces obtenues avec l’épaisseur moyenne du copeau plus élevée ont présenté une rugosité supérieure. Par contre, si une surface plus lisse est requise, une vitesse d’avance intermédiaire doit être utilisée afin de diminuer la rugosité des surfaces sans exposer les travailleurs à des niveaux élevés de poussière de bois. Par ailleurs, l’émission de poussières pour chaque fraction de particules peut être estimée à travers les modèles développés.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resumo: Para execução do processo de raleamento na Caatinga é importante utilizar máquinas do tipo rotores trituradores acoplados em tratores de baixa potência, visando a diminuição de tempo e mão-de-obra dos agricultores familiares na, implantação de sistemas de exploração sustentáveis, sistemas agrossilvipastoris. Para o projeto de uma máquina que seja acessível a estes produtores, o primeiro passo é se conhecer a potência de corte necessária para a operação de raleamento. O objetivo deste trabalho foi desenvolver e avaliar uma metodologia de ensaio para medir a potência durante o corte de uma espécie arbórea, podendo assim avaliar os parâmetros a serem utilizados futuramente no projeto da máquina. Como espécie teste, utilizou-se o eucalyptus citriodora, por ser uma madeira que apresenta resistência de corte elevada e similar ao das espécies da Caatinga. Observou-se que a metodologia proposta, ao padronizar os procedimentos, permitiu adquirir de forma rápida e precisa os valores dos parâmetros de importância no projeto de máquinas destinadas a cortar e triturar espécies arbóreas. Também a utilização dos dados obtidos por meio da aplicação da metodologia, possibilitam maior confiabilidade e precisão no projeto de máquinas destinadas a este tipo de trabalho. [Methodology for obtaining the cutting power of a forest crusher]. Abstract: For executions the thinning process in Caatinga is important to use machines as Rotors Crushers coupled in low- power tractors, aimed at decrease of time and hand labor of Family Farmers in the implementation of sustainable exploration systems, agrosylvopastoral Systems. For the project for the design of a machine that is accessible these producers, the first step is knowing the cut power needed for a thinning operation. The objective of this study was to develop and evaluate a test methodology to measure the power during the cutting of a tree species and can evaluate the cutting parameters used in the future in machine design. As a test species, we used the eucalyptus citriodora, as this wood has cut high resistance and similar to Species of Caatinga. It was observed that the methodology proposal, to the standardize procedures, allows to get quickly and accurately the values of importance parameters in the design of machines designed to cut and grind tree species. Also the use of data obtained through the application of the methodology , enable greater reliability and precision in machine design intended for this type of work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We apply the method of multiple scales (MMS) to a well-known model of regenerative cutting vibrations in the large delay regime. By ``large'' we mean the delay is much larger than the timescale of typical cutting tool oscillations. The MMS up to second order, recently developed for such systems, is applied here to study tool dynamics in the large delay regime. The second order analysis is found to be much more accurate than the first order analysis. Numerical integration of the MMS slow flow is much faster than for the original equation, yet shows excellent accuracy in that plotted solutions of moderate amplitudes are visually near-indistinguishable. The advantages of the present analysis are that infinite dimensional dynamics is retained in the slow flow, while the more usual center manifold reduction gives a planar phase space; lower-dimensional dynamical features, such as Hopf bifurcations and families of periodic solutions, are also captured by the MMS; the strong sensitivity of the slow modulation dynamics to small changes in parameter values, peculiar to such systems with large delays, is seen clearly; and though certain parameters are treated as small (or, reciprocally, large), the analysis is not restricted to infinitesimal distances from the Hopf bifurcation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slow flow in granular materials is characterized by high solid fraction and sustained inter-particle interaction. The kinematics of trawling or cutting is encountered in processes such as locomotion of organisms in sand; trawl gear movement on a soil deposit; plow movement; movement of rovers, earth moving equipment etc. Additionally, this configuration is very akin to shallow drilling configuration encountered in the mining and petroleum industries. An experimental study has been made in order to understand velocity and deformation fields in cutting of a model rounded sand. Under nominal plane strain conditions, sand is subjected to orthogonal cutting at different tool-rake angles. High-resolution optical images of the region of cutting were obtained during the flow of the granular ensemble around the tool. Interesting kinematics underlying the formation of a chip and the evolution of the deformation field is seen in these experiments. These images are also analyzed using a PIV algorithm and detailed information of the deformation parameters such as velocity, strain rate and volume change is obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficiency and overall quality of a laser cutting operation is highly dependent on the assist gas parameters. The desire to cut thicker material has led to the observation of small process operating windows for thicker sections. The gas jet delivery and subsequent dynamical behaviour have significant effects on the cutting operation as the sample thickness increases. To date, few workers have examined the dynamical behaviour of the gas jet. This paper examines the characteristics of oxygen gas jets during CO2 laser cutting of steel. Particular emphasis is placed on the mass transfer effects that are operating within the kerf. Oxygen concentration levels within a model kerf are measured for various laser cutting set-ups. The results show a substantial reduction in oxygen concentration within the kerf. A system for oxygen concentration maintenance is described and cutting results from this system are compared with conventional techniques for cutting steels in the range 10 to 20mm thick. A theoretical analysis of turbulent mass transfer within a kerf is presented and compared with experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we review the energy requirements to make materials on a global scale by focusing on the five construction materials that dominate energy used in material production: steel, cement, paper, plastics and aluminium. We then estimate the possibility of reducing absolute material production energy by half, while doubling production from the present to 2050. The goal therefore is a 75 per cent reduction in energy intensity. Four technology-based strategies are investigated, regardless of cost: (i) widespread application of best available technology (BAT), (ii) BAT to cutting-edge technologies, (iii) aggressive recycling and finally, and (iv) significant improvements in recycling technologies. Taken together, these aggressive strategies could produce impressive gains, of the order of a 50-56 per cent reduction in energy intensity, but this is still short of our goal of a 75 per cent reduction. Ultimately, we face fundamental thermodynamic as well as practical constraints on our ability to improve the energy intensity of material production. A strategy to reduce demand by providing material services with less material (called 'material efficiency') is outlined as an approach to solving this dilemma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research on the delayed failure of cuttings in clay clearly recognises and predicts progressive delayed failure of deep cuttings. This is due to a combination of strain-softening, weathering, dissipation of negative excess pore water pressure generated at the time of excavation, and frequent occurrence of prolonged periods of wet weather. There have been several slope failures of this kind in Northern Ireland. This paper discusses a case study based on a failure of a deep cutting, excavated at a slope of 1 in 2, on the A1 near Dromore (County Down) in Northern Ireland. The cutting was in lodgement till, a stiff, heavily overconsolidated clay. The failure occurred approximately 30 years after the cutting was excavated, following a prolonged period of heavy rainfall. An analysis of the failure, together with laboratory test data on soil samples taken from the site, confirmed that by using long-term soil strength parameters the factor of safety of this slope was unity. The conclusion of the analysis is that slopes excavated in this soil should be designed (and assessed) on long-term strength parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

3C–SiC (the only polytype of SiC that resides in a diamond cubic lattice structure) is a relatively new material that exhibits most of the desirable engineering properties required for advanced electronic applications. The anisotropy exhibited by 3C–SiC during its nanometric cutting is significant, and the potential for its exploitation has yet to be fully investigated. This paper aims to understand the influence of crystal anisotropy of 3C–SiC on its cutting behaviour. A molecular dynamics simulation model was developed to simulate the nanometric cutting of single-crystal 3C–SiC in nine (9) distinct combinations of crystal orientations and cutting directions, i.e. (1?1?1) <-1?1?0>, (1?1?1) <-2?1?1>, (1?1?0) <-1?1?0>, (1?1?0) <0?0?1>, (1?1?0) <1?1?-2>, (0?0?1) <-1?1?0>, (0?0?1) <1?0?0>, (1?1?-2) <1?-1?0> and (1?-2?0) <2?1?0>.

In order to ensure the reliability of the simulation results, two separate simulation trials were carried out with different machining parameters. In the first trial, a cutting tool rake angle of -25°, d/r (uncut chip thickness/cutting edge radius) ratio of 0.57 and cutting velocity of 10 m s-1 were used whereas a second trial was done using a cutting tool rake angle of -30°, d/r ratio of 1 and cutting velocity of 4 m s-1. Both the trials showed similar anisotropic variation.

The simulated orthogonal components of thrust force in 3C–SiC showed a variation of up to 45%, while the resultant cutting forces showed a variation of 37%. This suggests that 3C–SiC is highly anisotropic in its ease of deformation. These results corroborate with the experimentally observed anisotropic variation of 43.6% in Young's modulus of 3C–SiC. The recently developed dislocation extraction algorithm (DXA) [1, 2] was employed to detect the nucleation of dislocations in the MD simulations of varying cutting orientations and cutting directions. Based on the overall analysis, it was found that 3C–SiC offers ease of deformation on either (1?1?1) <-1?1?0>, (1?1?0) <0?0?1>, or (1?0?0) <1?0?0> setups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Mémoire présenté à la Faculté des Études supérieures en vue de l'obtention du grade de LL.M. en Maîtrise en droit Option recherche"

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy production from biomass and the conservation of ecologically valuable grassland habitats are two important issues of agriculture today. The combination of a bioenergy production, which minimises environmental impacts and competition with food production for land with a conversion of semi-natural grasslands through new utilization alternatives for the biomass, led to the development of the IFBB process. Its basic principle is the separation of biomass into a liquid fraction (press fluid, PF) for the production of electric and thermal energy after anaerobic digestion to biogas and a solid fraction (press cake, PC) for the production of thermal energy through combustion. This study was undertaken to explore mass and energy flows as well as quality aspects of energy carriers within the IFBB process and determine their dependency on biomass-related and technical parameters. Two experiments were conducted, in which biomass from semi-natural grassland was conserved as silage and subjected to a hydrothermal conditioning and a subsequent mechanical dehydration with a screw press. Methane yield of the PF and the untreated silage was determined in anaerobic digestion experiments in batch fermenters at 37°C with a fermentation time of 13-15 and 27-35 days for the PF and the silage, respectively. Concentrations of dry matter (DM), ash, crude protein (CP), crude fibre (CF), ether extract (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent ligning (ADL) and elements (K, Mg, Ca, Cl, N, S, P, C, H, N) were determined in the untreated biomass and the PC. Higher heating value (HHV) and ash softening temperature (AST) were calculated based on elemental concentration. Chemical composition of the PF and mass flows of all plant compounds into the PF were calculated. In the first experiment, biomass from five different semi-natural grassland swards (Arrhenaterion I and II, Caricion fuscae, Filipendulion ulmariae, Polygono-Trisetion) was harvested at one late sampling (19 July or 31 August) and ensiled. Each silage was subjected to three different temperature treatments (5°C, 60°C, 80°C) during hydrothermal conditioning. Based on observed methane yields and HHV as energy output parameters as well as literature-based and observed energy input parameters, energy and green house gas (GHG) balances were calculated for IFBB and two reference conversion processes, whole-crop digestion of untreated silage (WCD) and combustion of hay (CH). In the second experiment, biomass from one single semi-natural grassland sward (Arrhenaterion) was harvested at eight consecutive dates (27/04, 02/05, 09/05, 16/05, 24/05, 31/05, 11/06, 21/06) and ensiled. Each silage was subjected to six different treatments (no hydrothermal conditioning and hydrothermal conditioning at 10°C, 30°C, 50°C, 70°C, 90°C). Energy balance was calculated for IFBB and WCD. Multiple regression models were developed to predict mass flows, concentrations of elements in the PC, concentration of organic compounds in the PF and energy conversion efficiency of the IFBB process from temperature of hydrothermal conditioning as well as NDF and DM concentration in the silage. Results showed a relative reduction of ash and all elements detrimental for combustion in the PC compared to the untreated biomass of 20-90%. Reduction was highest for K and Cl and lowest for N. HHV of PC and untreated biomass were in a comparable range (17.8-19.5 MJ kg-1 DM), but AST of PC was higher (1156-1254°C). Methane yields of PF were higher compared to those of WCD when the biomass was harvested late (end of May and later) and in a comparable range when the biomass was harvested early and ranged from 332 to 458 LN kg-1 VS. Regarding energy and GHG balances, IFBB, with a net energy yield of 11.9-14.1 MWh ha-1, a conversion efficiency of 0.43-0.51, and GHG mitigation of 3.6-4.4 t CO2eq ha-1, performed better than WCD, but worse than CH. WCD produces thermal and electric energy with low efficiency, CH produces only thermal energy with a low quality solid fuel with high efficiency, IFBB produces thermal and electric energy with a solid fuel of high quality with medium efficiency. Regression models were able to predict target parameters with high accuracy (R2=0.70-0.99). The influence of increasing temperature of hydrothermal conditioning was an increase of mass flows, a decrease of element concentrations in the PC and a differing effect on energy conversion efficiency. The influence of increasing NDF concentration of the silage was a differing effect on mass flows, a decrease of element concentrations in the PC and an increase of energy conversion efficiency. The influence of increasing DM concentration of the silage was a decrease of mass flows, an increase of element concentrations in the PC and an increase of energy conversion efficiency. Based on the models an optimised IFBB process would be obtained with a medium temperature of hydrothermal conditioning (50°C), high NDF concentrations in the silage and medium DM concentrations of the silage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the one-dimensional cutting stock problem when demand is a random variable. The problem is formulated as a two-stage stochastic nonlinear program with recourse. The first stage decision variables are the number of objects to be cut according to a cutting pattern. The second stage decision variables are the number of holding or backordering items due to the decisions made in the first stage. The problem`s objective is to minimize the total expected cost incurred in both stages, due to waste and holding or backordering penalties. A Simplex-based method with column generation is proposed for solving a linear relaxation of the resulting optimization problem. The proposed method is evaluated by using two well-known measures of uncertainty effects in stochastic programming: the value of stochastic solution-VSS-and the expected value of perfect information-EVPI. The optimal two-stage solution is shown to be more effective than the alternative wait-and-see and expected value approaches, even under small variations in the parameters of the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis focuses on characterisation of microstructure and the resulting mechanical and tribological properties of CVD and PVD coatings used in metal cutting applications. These thin and hard coatings are designed to improve the tribological performance of cutting tools which in metal cutting operations may result in improved cutting performance, lower energy consumption, lower production costs and lower impact on the environment.  In order to increase the understanding of the tribological behaviour of the coating systems a number of friction and wear tests have been performed and evaluated by post-test microscopy and surface analysis. Much of the work has focused on coating cohesive and adhesive strength, surface fatigue resistance, abrasive wear resistance and friction and wear behaviour under sliding contact and metal cutting conditions. The results show that the CVD deposition of accurate crystallographic phases, e.g. α-Al2O3 rather than κ-Al2O3, textures and multilayer structures can increase the wear resistance of Al2O3. However, the characteristics of the interfaces, e.g. topography as well as interfacial porosity, have a strong impact on coating adhesion and consequently on the resulting properties.  Through the deposition of well designed bonding and template layer structures the above problems may be eliminated. Also, the presence of macro-particles in PVD coatings may have a significant impact on the interfacial adhesive strength, increasing the tendency to coating spalling and lowering the surface fatigue resistance, as well as increasing the friction in sliding contacts. Finally, the CVD-Al2O3 coating topography influences the contact conditions in sliding as well as in metal cutting. In summary, the work illuminates the importance of understanding the relationships between deposition process parameters, composition and microstructure, resulting properties and tribological performance of CVD and PVD coatings and how this knowledge can be used to develop the coating materials of tomorrow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work reported here involved an investigation into the grinding process, one of the last finishing processes carried out on a production line. Although several input parameters are involved in this process, attention today focuses strongly on the form and amount of cutting fluid employed, since these substances may be seriously pernicious to human health and to the environment, and involve high purchasing and maintenance costs when utilized and stored incorrectly. The type and amount of cutting fluid used directly affect some of the main output variables of the grinding process which are analyzed here, such as tangential cutting force, specific grinding energy, acoustic emission, diametrical wear, roughness, residual stress and scanning electron microscopy. To analyze the influence of these variables, an optimised fluid application methodology was developed (involving rounded 5, 4 and 3 turn diameter nozzles and high fluid application pressures) to reduce the amount of fluid used in the grinding process and improve its performance in comparison with the conventional fluid application method (of diffuser nozzles and lower fluid application pressure). To this end, two types of cutting fluid (a 5% synthetic emulsion and neat oil) and two abrasive tools (an aluminium oxide and a superabrasive CBN grinding wheel) were used. The results revealed that, in every situation, the optimised application of cutting fluid significantly improved the efficiency of the process, particularly the combined use of neat oil and CBN grinding wheel. (c) 2005 Elsevier Ltd. All rights reserved.