109 resultados para Cupressaceae
Resumo:
Based on pollen analysis of a sediment core from the Atlantic Ocean off Liberia the West African vegetation history for the last 400 ka is reconstructed. During the cold oxygen isotope stages 12, 10, 8, 6, 4, 3 and 2 an arid climate is indicated, resulting in a southward shifting of the southern border of the savanna. Late Pleistocene glacial stages were more arid than during the Middle Pleistocene. A persistence of the rain forest in the area, even during the glacial stages, is recorded. This suggests a glacial refuge of rain forest situated in the Guinean mountains. Afromontane forests with Podocarpus occurred in the Guinean mountains from the stages 12 to 2 and disappeared after. The tree expanded from higher to lower elevations twice in the warm oxygen isotope stage 11 (pollen subzones 11d, 11b) and at least twice during the warm stage 5 (pollen subzones 5d, 5a), indicating a relative cool but humid climate for these periods.
Resumo:
The argillite sequence located at the base of the sedimentary cover on the continental slope of the Sea of Japan was studied by petrographic, palynological, and X-ray diffraction methods. Two spores-pollen complexes were distinguished in it: the Late Oligocene reflecting cooling and the Early Miocene corresponding to initiated warming. Data obtained indicate that the sequence is composed of terrigenous silty-clayey sediments that accumulated in shallow coastal-marine settings. The global sea-level rise at the Early-Middle Miocene transition, combined with regional tectonic processes, determined basin's deepening, owing to which the argillite sequence was overlain by a thick layer of Middle Miocene diatomaceous-clayey sediments. Due to tectonic movement along existing faults in the terminal Late Miocene, the argillite sequence occurring initially at depths of at least 400-500 m was locally exhumed to the basin bottom.
Resumo:
Pollen and macrofossil evidence for the nature of the vegetation during glacial and interglacial periods in the regions south of the Wisconsinan ice margin is still very scarce. Modern opinions concerning these problems are therefore predominantly derived from geological evidence only or are extrapolated from pollen studies of late Wisconsinan deposits. Now for the first time pollen and macrofossil analyses are available from south-central Illinois covering the Holocene, the entire Wisconsinan, and most probably also Sangamonian and late Illinoian time. The cores studied came from three lakes, which originated as kettle holes in glacial drift of Illinoian age near Vandalia, Fayette County. The Wisconsinan ice sheet approached the sites from the the north to within about 60 km distance only. One of the profiles (Pittsburg Basin) probably reaches back to the late Illinoian (zone 1), which was characterized by forests with much Picea. Zone 2, most likely of Sangamonian age, represents a period of species-rich deciduous forests, which must have been similar to the ones that thrive today south and southeast of the prairie peninsula. During the entire Wisconsinan (14C dates ranging from 38,000 to 21,000 BP) thermophilous deciduous trees like Quercus, Carya, and Ulmus occurred in the region, although temporarily accompanied by tree genera with a more northerly modern distribution, such as Picea, which entered and then left south-central Illinois during the Woodfordian. Thus it is evident that arctic climatic conditions did not prevail in the lowlands of south-central Illinois (about 38°30' lat) during the Wisconsinan, even at the time of the maximum glaciation, the Woodfordian. The Wisconsinan was, however, not a period of continuous forest. The pollen assemblages of zone 3 (Altonian) indicate prairie with stands of trees, and in zone 4 the relatively abundant Artemisia pollen indicates the existence of open vegetation and stands of deciduous trees, Picea, and Pinus. True tundra may have existed north of the sites, but if so its pollen rain apparently is marked by pollen from nearby stands of trees. After the disappearance of Pinus and Picea at about 14,000 BP (estimated!), there developed a mosaic of prairies and stands of Quercus, Carya, and other deciduous tree genera (zone 5). This type of vegetation persisted until it was destroyed by cultivation during the 19th and 20th century. Major vegetational changes are not indicated in the pollen diagram for the late Wisconsinan and the Holocene. The dating of zones 1 and 2 is problematical because the sediments are beyond the14C range and because of the lack of stratigraphic evidence. The zones dated as Illinoian and Sangamonian could also represent just a Wisconsinan stadial and interstadial. This possibility, however, seems to be contradicted by the late glacial and interglacial character of the forest vegetation of that time.