994 resultados para Cuo : HZSM-5


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In/HZSM-5/ln(2)O(3) catalyst that contained two different kinds of In induced by the impregnating and the physical mixing method respectively has shown remarkable activity for the CH4-SCR of NOx comparing with In/HZSM-5. The addition of In2O3 into In/HZSM-5 improved the NO conversion through enhancing the adsorption of NOx over In/HZSM-5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colloidal alumina was used to improve the activity of an In/HZSM-5 catalyst for the selective reduction of NO with CH4 in the excess of oxygen. Compared with In/HZSM-5, the In/HZSM-5/Al2O3 catalyst showed higher activity in a wide range of reaction temperatures. It is visualized that a synergetic effect between In/HZSM-5 and Al2O3 enhances the conversion of NOx. The addition of Al2O3 improved the conversion of NO to NO2 and facilitated the activation of methane. An In/HZSM-5/Al2O3 pre-treated with steam for 15 h at 700 degreesC still showed a high activity for the removal of NOx with methane, while an In/HZSM-5 similarly pre-treated with steam showed a lower activity than the fresh sample. The activity of the In/HZSM-5/Al2O3 catalyst could be restored completely after water vapor was removed from the feed gas. Furthermore, it was found that the In/HZSM-5/Al2O3 remained fairly active under high GHSV and O-2 concentration conditions. It was also interesting to find that an increase in NO content could enhance the conversion of methane, and this illustrates that the existence of NO is beneficial for the activation of methane. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Post-steaming treatment of Mo/HZSM-5 catalysts results in more molybdenum species migrating into and residing in the HZSM-5 zeolite channels. This is confirmed by XRF and XPS measurements. H-1 MAS NMR and Si-29 MAS NMR also demonstrate that the number of free Bronsted acid sites decreases in the Mo/HZSM-5 catalysts that underwent post-steaming treatment, compared to untreated Mo/HZSM-5 catalysts. As a result, the deactivation rate constant (kd) on the Mo/HZSM-5 catalyst after post-steaming treatment for 0.5 h is much smaller, and the catalyst therefore shows remarkable stability in the probe reaction of methane dehydro-aromatization. The results suggest that a more beneficial bi-functional balance between active Mo species for methane activation and acid sites for the following aromatization is developed over those Mo/HZSM-5 catalysts that have experienced post-steaming treatment for 0.5 h, in comparison with the untreated Mo/HZSM-5 catalysts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acid sites in dealuminated HZSM-5 zeolite with crystal sizes down to the nanoscale were firstly characterized by the probe molecule trimethylphosphine (TMP). As evidenced by the combination of P-31 CP/MAS NMR, Al-27 MAS and H-1 --> Al-27 CP/MAS NMR measurements, the Bronsted acid sites of both microsized and nanosized HZSM-5 could be decreased upon the dealumination of zeolitic framework after hydrothermal treatment. At the same time, the appearance of Lewis acid sites was observed. The dealuminated nanosized HZSM-5 is easier to form Lewis acid sites than microsized HZSM-5, and the type of Lewis acid sites in nanosized HSM-5 is more than one. In addition, the origin of Lewis acid sites is mainly associated with the aluminum at ca. 30 ppm, in the Al-27 MAS NMR spectra, and only a part of which in the dealuminated HZSM-5 zeolite acts as Lewis acid sites. (C) 2002 Elsevier Science B.V. All rights reserved.