905 resultados para Cultivation of microalgae
Resumo:
The reuse of holdfasts for regeneration of young seedlings or using wild juvenile plants as the seedling source has played the major role in commercial cultivation of the brown alga Hizikia fusiformis in East Asia over the past 20 years. The possibility of employing zygote-derived germlings for producing seedlings has been discussed in the literature, but has not yet become a reality. Three main obstacles have limited the use of zygotes as a main source of seedlings, (1) the dioecious nature of the algal life cycle which may lead to asynchronous male and female receptacle development and thus different timing of egg and spermatozoa expulsion, (2) the low attachment rate when using zygote-derived germlings with developed rhizoids from wild parental plants for seeding production, and (3) the problem of culturing young germlings in regions where water temperature is high in summer. In this investigation, shifting the timing of receptacle formation earlier than in nature was performed by tumbling the algae in a long-day tank (16-h light per day). Synchronization of egg and spermatozoa expulsion and thereafter fertilization were conducted in indoor tanks. Receptacle formation in constant long days could be shifted by 20 days earlier than in plants cultured on long lines in the open sea, or I month earlier than in plants growing on intertidal rocks. Synchronized expulsion of eggs and spermatozoon led to a high rate of fertilization. This was achieved by tumbling the male and female receptacle-bearing branchlets in the same tank at low density in high irradiance. In two independent trials, a total of 1,400,000 zygote-derived germlings were obtained from 620 g (fresh weight) female sporophytes. The germlings shed from the receptacles were at an identical developmental stage indicating high synchronization of expulsion of eggs and spermatozoon followed by fertilization. Approximately 63% ( +/-9.6%) of the germlings were shed from the receptacle between 16 and 24 It after fertilization and 20% ( +/-11.9%) remained on the receptacle for 3 days after fertilization. Germlings were seeded on string collectors before rhizoids started to elongate and the attachment efficiency was enhanced. Young seedlings reached 800 ( +/-50) mum in length in 25 days at 25 degreesC before they were transferred to open sea cultivation. These results provide the basis of a practical way of seedling production by use of zygote-derived germlings in the commercial cultivation of Hizikia fusiformis. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Tank cultivation of marine macroalgae involves air-agitation of the algal biomass and intermittent light conditions, i.e. periodic, short light exposure of the thalli in the range of 10 s at the water surface followed by plunging to low light or darkness at the tank bottom and recirculation back to the surface in the range of 1-2 min. Open questions relate to effects of surface irradiance on growth rate and yield in such tumble cultures and the possibility of chronic photoinhibition in full sunlight. A specially constructed shallow-depth tank combined with a dark tank allowed fast circulation times of approximately 5 s, at a density of 4.2 kg fresh weight (FW) m(-2) s(-1). Growth rate and yield of the red alga Palmaria palmata increased over a wide range of irradiances, with no signs of chronic photoinhibition, up to a growth-saturating irradiance of approximately 1600 mumol m(-2) s(-1) in yellowish light supplied by a sodium high pressure lamp at 16 h light per day. Maximum growth rate ranged at 12% FW d(-1), and maximum yield at 609 g FW m(-2) d(-1). This shows that high growth rates of individual thalli may be reached in a dense tumble culture, if high surface irradiances and short circulation times are supplied. Another aspect of intermittent light relates to possible changes of basic growth kinetics, as compared to continuous light. For this purpose on-line measurements of growth rate were performed with a daily light reduction by 50% in light-dark cycles of 1, 2 or 3 min duration during the daily light period. Growth rates at 10degreesC and 50 mumol photon m(-2) s- 1 dropped in all three intermittent light regimes during both the main light and dark periods and reached with all three periodicities approximately 50% of the control, with no apparent changes in basic growth kinetics, as compared to continuous light.
Resumo:
Undaria pinnatifida gametophytes were grown in 2.5 l bubble column and airlift reactor at 25 degreesC and light intensity of 40 mumol m(-2) s(-1) for 6 days. With aeration at 1 l min(-1), the airlift reactor yielded higher growth rate (0.12 mg DW ml(-1) d(-1)) than a bubble column (0.08 mg DW ml(-1) d(-1)). The advantages were related to the more homogeneous fluid dynamic characteristics of the airlift reactor.
Resumo:
The effect of simultaneously cultivating the pearl oyster Pinctada martensi and the red alga Kappaphycus alvarezii on growth rates of both species was investigated in laboratory and field studies conducted from December 1993 to June 1995. The two study sites were in subtidal areas 100 km apart off the east coast of Hainan Island, China. Pearl oysters were cultivated in the center of an algal farm and red alga was cultivated in the center of the pearl oyster farm. These field experiments showed higher growth rates of both P. martensi and K. alvarezii in a co-culture system than in a monospecies culture system. Laboratory studies showed that the algae removed nitrogenous wastes released by pearl oysters. Algae treated with pearl oyster wastes grew much faster than those without oyster wastes. Algae treated with the seawater to which NH4Cl, NaNO3 and NaNO2 were added grew at the same rate as those treated with natural seawater containing oyster nitrogenous wastes, suggesting that enhanced growth of algae in the co-culture system was largely due to nitrogenous metabolites of the pearl oysters. In the co-culture, growth of pearl oysters was positively influenced by the presence of rapidly growing algae but when seawater temperature decreased below 20 degrees C, the algae grew slowly and there was no measurable benefit of mixed culture to either algae or pearl oyster.
Resumo:
Commercial farming of the intertidal brown alga Hizikia fusiformis (Harvey) Okamura in China and South Korea in the sea depends on three sources of seedlings: holdfast-derived regenerated seedlings, young plants from wild population and zygote-derived seedlings. Like many successfully farmed seaweed species, the sustainable development of Hizikia farming will rely on a stable supply of artificial seedlings via sexual reproduction under controlled conditions. However, the high rate of detachment of seedlings after transfer to open sea is one of the main obstacles, and has limited large-scale application of zygote-derived seedlings. To seek the optimal condition for growing seedlings on substratum in land-based tanks for avoidance of detachment in this investigation, young seedlings were grown in both outdoor tanks exposed directly to sunlight and in indoor raceway tanks in reduced, filtered sunlight. Results showed that young seedlings, immediately after fertilization, could withstand a daily fluctuation of direct solar irradiance up to a level of 1800 mu mol photons m(-1)s(-1), and maintained a faster growth rate than seedlings grown in indoor tanks. Detailed experiments by use of chlorophyll fluorescence measurements further demonstrated that the overnight (12 h) recovery of optimal fluorescence quantum yield (F-v/F-m) of seedlings after 1 h treatment at 40 degrees C was 98%, and the 48 h recovery of F-v/F-m of seedlings after 1 h exposure to 1800 mu mol m(-2)s(-1) was 92%. Forty-one-day-old seedlings showed no significant decrease of optimal fluorescence quantum yield at salinity ranging from 30 to 5 ppt for a treatment up to 17 h. Six-hour desiccation treatment did not have any influence on the optimal fluorescence quantum yield. Exposure to 18 mmol L-1 sodium hypochlorite for 10 min did not damage the PSII efficiency, and thus could be used to remove epiphytic algae. The strong tolerance of young seedlings to high temperature, high irradiance, low salinity and desiccation found in this investigation supports the view that mass production of Hizikia seedlings should be performed in ambient light and temperature instead of in shaded greenhouse tanks.
Resumo:
Batch cultivation for transgenic kelp gametophyte cells was investigated in an online controlled 5 L stirred-tank photo-bioreactor to rapidly optimize the process conditions by monitoring the rate of increase of pH. The transgenic kelp gametophytes with heterologous gene encoding hepatitis B surface antigen (HBsAg) could rapidly grow in the bioreactor. Optimal temperature and agitation rate for bioreactor cultivation of gametophytes were 15 degrees C and 200 rpm. Optimal incident light intensities depended on the initial cell densities. (c) 2006 Elsevier B.V. All fights reserved.
Resumo:
Commercial cultivation of the dioecious brown macroalga Hizikia fusiformis (Harvey) Okamura in East Asia depends on the supply of young seedlings from regenerated holdfasts or from wild population. Recent development of synchronized release of male and female gametes in tumble culture provides a possibility of mass production of young seedlings via sexual reproduction. In this paper, we demonstrate that controlled fertilization can be efficiently realized in ambient light and temperature in a specially designed raceway tank in which the sperm-containing water has been recirculated. The effective fertilization time of eggs by sperm was found to be within six hours. Fast growth and development of the young seedlings relied on the presence of water currents. Velocity tests demonstrated that young seedlings of 2-3 mm in length could withstand a water current of 190 cm s(-1) stop without detachment. Culture experiments at 24 h postfertilization showed that elongation of both the seedlings and their rhizoids were not hampered by high irradiance up to 600 mu mol photons m(-2) stop s(-1) stop. However, growth was slightly retarded if cultured at a temperature of 16 degrees C compared to other culture temperatures of 22, 25 and 29 degrees C. No seedling detachment was observed after transfer of the young seedlings to raft cultivation in the sea after one and 1.5 months post-fertilization, indicating the feasibility of obtaining large quantity of seedlings in such a system.
Resumo:
Field-collected tetrasporophytes of Palmaria palmata were tumbled in 300-L outdoor tanks from January to August at ambient daylength or in a constant short-day (SD) regime (8 h light per day), both at 10 or 15 degrees C. Tetrasporangia were massively induced after 2.5 months under SD conditions at 10 degrees C and completely lacking at 15 degrees C, both under SD or ambient daylength conditions, with a few tetrasporangia present at 10 degrees C and ambient daylength. Elongation rates of tagged tetrasporophytic thalli peaked from March to April in all four conditions, when the biomass densities in the outdoor tanks were close to 2.5 kg fresh weight m(-2). Under all four conditions, juvenile proliferations started to appear in June from the margins of the old fronds, and attained approximately 1 cm in length by the end of July. Approximately 80% of the tetraspores were released during the first three dark phases in a light/dark regime, and the remaining 20% during the light phases. A minimum of 10 min darkness was observed to trigger spore release. White light inhibited tetraspore release, while a similar number of spores were released in continuous red light or in the light/dark regime, although with no significant differences of spore release during subjective days and nights. Sporelings were successfully derived from the released tetraspores for mass propagation of the male gametophyte in 2000-L outdoor tanks in a greenhouse. Mass production of male gametophytic sporelings of P. palmata was completed two times by SD induction of tetrasporangia at 10 degrees C, release of spores in darkness and culturing the sporelings until they were ready to be propagated vegetatively in greenhouse tanks. One experiment lasted from January to October 2001, with spore release in June, and the second from September to April 2003, with spore release in January. These results may support the development of sustainable, year-round Palmaria farming. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Process conditions for cell cultures derived from conchocelis of female red macroalga Porphyra haitanensis were optimized in an illuminated 0.3-l bubble-column photobioreactor, using CO2 in air as the sole carbon source during a 20-day cultivation period. It reached the highest growth rate when the initial cell density was 700 mg l(-1)(dry weight), the optional aeration rate was 1.2 v/v/min, inorganic nitrate concentration was 15 mM and inorganic phosphate concentration was 0.6 mM. This is the first reported bioreactor cultivation study of cell cultures derived from conchocelis of Porphyra haitanensis.
Resumo:
Fluctuating light intensity had a more significant impact on growth of gametophytes of transgenic Laminaria japonica in a 2500 ml bubble-column bioreactor than constant light intensity. A fluctuating light intensity between 10 and 110 mu E m(-2) s(-1), with a photoperiod of 14 h:10 h light:dark, was the best regime for growth giving 1430 mg biomass l(-1).