996 resultados para Crystalline regions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nanoindentation response of the (001) face of sodium saccharin dihydrate is examined. The structure can be demarcated into regular and irregular regions or domains. The regular domains have solid-like and the irregular ones have liquid-like characteristics. Therefore, these domains impart a microstructure to the crystal. The indent face (001) is prominently developed in this crystal and unambiguously presents the regular and irregular regions to nanoindention. Average values of elastic modulus and hardness show a distinct bimodal mechanical response. Such a response has been observed in the case of intergrown polymorphs of aspirin and felodipine. We examine two possible reasons as to why the responses could be for bimodal in this crystal. The first possibility could be that the two domains correspond to regions of the original dihydrate and a lower hydrate that is obtained by the loss of some water. The second possibility could be that these responses correspond to regular and irregular regions in the structure. Nanoindentation is a very useful technique in the characterization of molecular solids, as a complementary technique to X-ray crystallography, because it samples different length scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micro-banded textures developed from thin films of a main-chain thermotropic liquid crystalline chloro-poly(aryl ether ketone) in the melt were investigated using transmission electron microscopy (TEM). selective area electron diffraction, and atomic force microscopy techniques. The micro-banded textures were formed in the copolymer thin films after annealing at temperatures between 320 and 330degreesC, where a highly ordered smectic crystalline phase is formed without mechanical shearing. The micro-banded textures displayed a sinusoidal-like periodicity with a spacing of 150 nm and an amplitude of 2 rim. The long axis of the banded texture was parallel to the b-axis of an orthorhombic unit cell. In the convex regions, the molecular chains exhibited a homeotropic alignment, i.e. the chain direction was parallel to the film normal. In the concave re-ions, the molecular chains possessed a tilted alignment. In addition to the effects of annealing temperatures and times, the thickness of the film played a vital role in the formation of the banded texture. A possible formation mechanism of this banded texture vas also suggested and discussed. It was suggested that the micro-bands were formed during cooling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystallization and phase behavior in solution-cast thin films of crystalline syndiotactic 1,2-polybutadiene (s-1,2-PB) and isotactic polypropylene (i-PP) blends have been investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM) techniques. Thin films of pure s-1,2-PB consist of parallel lamellae with the c-axis perpendicular to the film plane and the lateral scale in micrometer size, while those of i-PP are composed of cross-hatched and single-crystal-like lamellae. For the blends, TEM and AFM observations show that with addition of i-PP, the s-1,2-PB long lamellae become bended and i-PP itself tends to form dispersed convex regions oil a continuous s-1,2-PB phase even when i-PP is the predominant component, which indicates a strong phase separation between the two polymers during film formation. FESEM micrographs of both lower and upper surfaces of the films reveal that the s-1,2-PB lamellae pass through i-PPconvex regions from the bottom, i.e. the dispersed i-PP regions lie on the continuous s-1,2-PB phase. The structural development is attributed to an interplay of crystallization and phase separation of the blends in the film forming process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The banded textures in the films of a thermotropic liquid crystalline poly(aryl ether ketone) containing a lateral chloro group have been studied by means of transmission electron microscopy(TEM), electron diffraction(ED) and atomic force microscopy (AFM). The crystallization-induced Landed texture without external shear can be formed when the thin films were annealed at the temperature range(320-330 degrees C) of the liquid crystalline state from the melt, The results show that the banded regions have high orientation of single crystal based on the orthorhombic packing and the growing direction of the Lands is along the b axis of the crystals, This kind of single crystal-like bands is due to the different orientation of the packing molecular chains, The molecular chains of the dark bands in the bright field electron micrograph are perpendicular to the film plane, while the ones of the bright Lands are tilt along the b axis with the tilt angle upto +/-20 degrees.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of main-chain Liquid-crystalline ionomers containing sulfonate groups pendant on the polymer backbone were synthesized by an interfacial condensation reaction of 4,4'-dihydroxy-alpha,alpha'-dimethyl benzalazine, a mesogenic monomer, with brilliant yellow (BY), a sulfonate-containing monomer, and a 1/9 mixture of terephthaloyl and sebacoyl dichloride. The structures of the polymers were characterized by LR and UV spectroscopies. DSC and thermogravimetric analysis were used to measure the thermal properties of those polymers, and the mesogenic properties were characterized by a polarized optical microscope, DSC, and wide-angle X-ray diffraction. The ionomers were thermally stable to about 310 degreesC. They were thermotropic liquid-crystalline polymers (LCPs) with high mesomorphic-phase transition temperatures and exhibited broad nematic mesogenic regions of 160-170 degreesC, and they were lyotropic LCPs with willowy leaf-shaped textures in sulfuric acid. However, the thermotropic liquid-crystalline properties were somewhat weakened because the concentration of BY was more than 8%. The inherent viscosity in N-methyl-2-pyrrolidone suggested that intramolecular associations of sulfonate groups occurred at low concentration, and intermolecular associations predominated at higher concentration. (C) 2001 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aimed at saving the radiation dose required to crosslinking the polyamid-1010, BMI/PA1010 systems containing different amounts of difunctional crosslinking agent N,N'-bis-maleimide-4,4'-biphenyl methane (BMI) were prepared and the structure changes at the crystallographic and supermolecular levels before and after irradiation were studied by using WAXD, SAXS, and DSC techniques. It was found that by incorporation of BMI the microcrystal size L-100 is lowered due to the formation of hydrogen bond between the carbonyl oxygen of BMI and the amide hydrogen of PA1010 in the hydrogen bonded plane, and the overall crystallinity W-c is also decreased. The presence of BMI causes the crystal lamella thickness d(c) to decrease and greatly thickens the transition zone d(tr) between the crystalline and amorphous regions. As for the irradiated specimen, the maximum increments in the L-100 and W-c against dose curves decrease with BMI content, and the interception point D-i, at which the L-100 and W-c curves intercept their respective horizontal line of L-100/L-100(0) and W-c/W-c(0)=1, shift to lower dose with an increase in BMI concentration. In addition. the mechanism of the radiation chemical reactions in the three different phases under the action of BMI are discussed with special focus on the interface region. (C) 1999 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The drying of colloidal droplet suspensions is important in many realms of practical application and has sustained the interest of researchers over two decades. The arrangements of polystyrene and silica beads, both of diameter 1 μm, 10% by volume of solid deposited on normal glass (hydrophilic), and silicone (hydrophobic) surfaces evaporated from a suspension volume of 3 μL, were investigated. Doughnut shape depositions were found, imputing the influence of strong central circulation flows that resulted in three general regions. In the central region which had strong particle build-up, the top most layers of particle arrangement was confirmed to be disordered using power spectrum and radial distribution function analysis. On closer examination, this appeared more like frustrated attempts to crystallize into larger grains rather than beads arranging in a disordered fashion throughout the piling process. With an adapted micro-bulldozing operation to progressively remove layers of particles from the heap, we found that the later efforts to crystallize through lateral capillary inter-particle forces were liable to be undone once the particles contacted the disorganized particles underneath, which were formed out of the jamming of fast particles arriving at the surface. © 2014 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aqueous dispersions of monoolein (MO) with a commercial hydrophobically modified ethyl hydroxyethyl cellulose ether (HMEHEC) have been investigated with respect to the morphologies of the liquid crystalline nanoparticles. Only very low proportions of HMEHEC are accepted in the cubic and lamellar phases of the monoolein-water system. Due to the broad variation of composition and size of the commercial polymer, no other single-phase regions were found in the quasi-ternary system. Interactions of MO with different fractions of the HMEHEC sample induced the formation of lamellar and reversed hexagonal phases, identified from SAXD, polarization microscopy, and cryogenic TEM examinations. In excess water (more than 90 wt %) coarse dispersions are formed more or less spontaneously, containing particles of cubic phase from a size visible by the naked eye to small particles observed by cryoTEM. At high polymer/MO ratios, vesicles were frequently observed, often oligo-lamellar with inter-lamellar connections. After homogenization of the coarse dispersions in a microfluidizer, the large particles disappeared, apparently replaced by smaller cubic particles, often with vesicular attachments on the surfaces, and by vesicles or vesicular particles with a disordered interior. At the largest polymer contents no proper cubic particles were found directly after homogenization but mainly single-walled defected vesicles with a peculiar edgy appearance. During storage for 2 weeks, the dispersed particles changed toward more well-shaped cubic particles, even in dispersions with the highest polymer contents. In some of the samples with low polymer/MO ratio, dispersed particles of the reversed hexagonal type were found. A few of the homogenized samples were freeze-dried and rehydrated. Particles of essentially the same types, but with a less well-developed cubic character, were found after this treatment. © 2007 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionoluminescence (IL) has been used in this work as a sensitive tool to probe the microscopic electronic processes and structural changes produced on quartz by the irradiation with swift heavy ions. The IL yields have been measured as a function of irradiation fluence and electronic stopping power. The results are consistent with the assignment of the 2.7 eV (460 nm) band to the recombination of self-trapped excitons at the damaged regions in the irradiated material. Moreover, it was possible to determine the threshold for amorphization by a single ion impact, as 1:7 keV/nm, which agrees well with the results of previous studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of proteins associated with the CaCO3-containing biocrystals found in a wide variety of marine organisms is well established. In these organisms, including the primitive skeleton (spicule) of the sea urchin embryo, the structural and functional role of these proteins either in the biomineralization process or in control of the structural features of the biocrystals is unclear. Recently, one of the matrix proteins of the sea urchin spicule, SM 30, has been shown to contain a carbohydrate chain (the 1223 epitope) that has been implicated in the process whereby Ca2+ is deposited as CaCo3. Because an understanding of the localization of this protein, as well as other proteins found within the spicule, is central to understanding their function, we undertook to develop methods to localize spicule matrix proteins in intact spicules, using immunogold techniques and scanning electron microscopy. Gold particles indicative of this matrix glycoprotein could not be detected on the surface of spicules that had been isolated from embryo homogenates and treated with alkaline hypochlorite to remove any associated membranous material. However, when isolated spicules were etched for 2 min with dilute acetic acid (10 mM) to expose more internal regions of the crystal, SM 30 and perhaps other proteins bearing the 1223 carbohydrate epitope were detected in the calcite matrix. These results, indicating that these two antigens are widely distributed in the spicule, suggest that this technique should be applicable to any matrix protein for which antibodies are available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CO2 adsorption has been measured in different types of graphitic nanostructures (MWCNTs, acid treated MWCNTs, graphene nanoribbons and pure graphene) in order to evaluate the effect of the different defective regions/conformations in the adsorption process, i.e., sp3 hybridized carbon, curved regions, edge defects, etc. This analysis has been performed both in pure carbon and nitrogen-doped nanostructures in order to monitor the effect of surface functional groups on surface created after using different treatments (i.e., acid treatment and thermal expansion of the MWCNTs), and study their adsorption properties. Interestingly, the presence of exposed defective regions in the acid treated nanostructures (e.g., uncapped nanotubes) gives rise to an improvement in the amount of CO2 adsorbed; the adsorption process being completely reversible. For N-doped nanostructures, the adsorption capacity is further enhanced when compared to the pure carbon nanotubes after the tubes were unzipped. The larger proportion of defect sites and curved regions together with the presence of stronger adsorbent–adsorbate interactions, through the nitrogen surface groups, explains their larger adsorption capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elevated regions in the central parts of ocean basins are excellent for study of accumulation of eolian material. The mass-accumulation rates of this sediment component appear to reflect changes in the influx of volcanic materials through the Early Cretaceous to Recent history of Deep Sea Drilling Project Site 463, on the Mid-Pacific Mountains. Four distinct episodes of eolian accumulation occurred during the Cretaceous: two periods of moderate accumulation, averaging about 0.2 to 0.3 g/cm**2/10**3 yr, 67 to 70.5 m.y. ago and 91 to 108 m.y. ago; a period of low accumulation, approximately 0.03 g/cm**2/10**3 yr, 70.5 to 90 m.y. ago; and a period of high accumulation, about 0.9 g/cm**2/10**3 yr, 109 to 117 m.y. ago (bottom of the hole). Much of the Cenozoic section is missing from Site 463. Upper Miocene to Recent sediments record an upward increase in accumulation rates, from less than 0.01 to about 0.044 g/cm**2/10**3 yr. The late Pliocene-Pleistocene peak may reflect the change to glacial-wind regimes, as well as an increase in volcanic source materials.