36 resultados para Cry1Ac
Resumo:
BACKGROUND: Genetically modified MON 87701 X MON 89788 soybean (Glycine max), which expresses the Cry1Ac and EPSP-synthase proteins, has been registered for commercial use in Brazil. To develop an Insect Resistance Management (IRM) program for this event, laboratory and field studies were conducted to assess the high-dose concept and level of control it provides against Anticarsia gemmatalis and Pseudoplusia includens. RESULTS: The purified Cry1Ac protein was more active against A. gemmatalis [LC50 (FL 95%) = 0.23 (0.150.34) mu g Cry1Ac mL-1 diet] than P. includens [LC50 (FL 95%) = 3.72 (2.654.86) mu g Cry1Ac mL-1 diet]. In bioassays with freeze-dried MON 87701X MON 89788 soybean tissue diluted 25 times in an artificial diet, there was 100% mortality of A. gemmatalis and up to 95.79% mortality for P. includens. In leaf-disc bioassays and under conditions of high artificial infestation in the greenhouse and natural infestation in the field, MON 87701X MON 89788 soybean showed a high level of efficacy against both target pests. CONCLUSIONS: The MON 87701X MON 89788 soybean provides a high level of control against A. gemmatalis and P. includes, but a high-dose event only to A. gemmatalis. Copyright (c) 2012 Society of Chemical Industry
Resumo:
Strategies for delaying pest resistance to genetically modified crops that produce Bacillus thuringiensis (Bt) toxins are based primarily on theoretical models. One key assumption of such models is that genes conferring resistance are rare. Previous estimates for lepidopteran pests targeted by Bt crops seem to meet this assumption. We report here that the estimated frequency of a recessive allele conferring resistance to Bt toxin Cry1Ac was 0.16 (95% confidence interval = 0.05–0.26) in strains of pink bollworm (Pectinophora gossypiella) derived from 10 Arizona cotton fields during 1997. Unexpectedly, the estimated resistance allele frequency did not increase from 1997 to 1999 and Bt cotton remained extremely effective against pink bollworm. These results demonstrate that the assumptions and predictions of resistance management models must be reexamined.
Resumo:
Plantas transgênicas que expressam toxinas de Bacillus thuringiensis Berliner (Bt) têm sido amplamente utilizadas para o controle de Spodoptera frugiperda (J. E. Smith) no Brasil. Entretanto, a evolução da resistência é um dos maiores entraves para a continuidade do uso desta tecnologia. Para subsidiar programas de Manejo da Resistência de Insetos (MRI), foram conduzidos estudos para o aprimoramento dos programas de manejo da resistência de S. frugiperda a tecnologias Bt. Foram realizadas estudos para determinar a dominância funcional da resistência de S. frugiperda a tecnologias Bt mediante a avaliação da sobrevivência de larvas neonatas provenientes das linhagens de S. frugiperda resistentes ao milho Herculex® que expressa a proteína Cry1F (HX-R), ao milho YieldGard VT PRO™ que expressa as proteínas Cry1A.105 e Cry2Ab2 (VT-R), ao milho PowerCore™ que expressa as proteínas Cry1A.105, Cry2Ab2 e Cry1F (PW-R), e ao milho Agrisure Viptera™ que expressa a proteína Vip3Aa20 (Vip-R), além da linhagem suscetível (Sus) e de suas respectivas linhagens heterozigotas em diversas tecnologias de milho e algodão Bt. Posteriormente, um método prático para o monitoramento fenotípico da suscetibilidade a diferentes tecnologias de milho e algodão Bt foi testado a partir da avaliação da sobrevivência de larvas neonatas em folhas de plantas Bt em populações de S. frugiperda provenientes dos Estados do Rio Grande do Sul, Paraná, São Paulo, Goiás e Bahia na safra agrícola 2014/15. E por último, a estimativa da frequência de alelos de resistência de S. frugiperda a Vip3Aa20 foi validada pelo método de F1 screen. Em geral, observou-se alta mortalidade dos heterozigotos nas tecnologias Bt testadas, comprovando que a resistência de S. frugiperda a proteínas Bt é funcionalmente recessiva o que suporta a estratégia de refúgio em programas de MRI. Verificou-se também que linhagens resistentes a eventos que expressam proteínas Cry não sobrevivem em tecnologias que expressam proteína Vip. No monitoramento prático da suscetibilidade a tecnologias Bt, sobrevivência larval superior a 70% foi observada para populações de campo do Paraná, Goiás e Bahia no milho Herculex®. Em tecnologias de milho PowerCore™ e YieldGard VT PRO™ houve sobrevivência larval variando de 1,1 a 17,9%. Em contraste, não houve sobreviventes em tecnologias de milho Viptera™. Em algodão WideStrike® que expressa as proteínas Cry1Ac e Cry1F, sobrevivência acima de 41% foi observada para populações de campo de S. frugiperda. A sobrevivência larval em Bollgard II® que expressa as proteínas Cry1Ac e Cry2Ab2 variou de 14 a 40%. No algodão TwinLink® que expressa as proteínas Cry1Ab e Cry2Ae, a sobrevivência larval das populações foi menor que 20%. O método de F1 screen foi eficiente na detecção de alelos de resistência a Vip3Aa20 em populações de S. frugiperda provenientes de diferentes regiões produtoras de milho no Brasil na safra 2014/2015. De 263 isofamílias testadas, foram detectadas três isofamílias positivas oriundas do Paraná, Mato Grosso e Goiás. A frequência de resistência estimada a Vip3Aa20 variou de 0,0140 a 0,0367 nas populações avaliadas, sendo que a frequência total foi de 0,0076. Neste estudo, fornecemos informações para refinar as estratégias de MRI, além de introduzir novas técnicas para monitorar a resistência de S. frugiperda a tecnologias Bt no Brasil.
Resumo:
The expansion of cultivated areas with genetically modified crops (GM) is a worldwide phenomenon, stimulating regulatory authorities to implement strict procedures to monitor and verify the presence of GM varieties in agricultural crops. With the constant growing of plant cultivating areas all over the world, consumption of aflatoxin-contaminated food also increased. Aflatoxins correspond to a class of highly toxic contaminants found in agricultural products that can have harmful effects on human and animal health. Therefore, the safety and quality evaluation of agricultural products are important issues for consumers. Lateral flow tests (strip tests) is a promising method for the detection both proteins expressed in GM crops and aflatoxins-contaminated food samples. The advantages of this technique include its simplicity, rapidity and cost-effective when compared to the conventional methods. In this study, two novel and sensitive strip tests assay were developed for the identification of: (i) Cry1Ac and Cry8Ka5 proteins expressed in GM cotton crops and; (ii) aflatoxins from agricultural products. The first strip test was developed using a sandwhich format, while the second one was developed using a competitive format. Gold colloidal nanoparticles were used as detector reagent when coated with monoclonal antibodies. An anti-species specific antibody was sprayed at the nitrocellulose membrane to be used as a control line. To validate the first strip test, GM (Bollgard I® e Planta 50- EMBRAPA) and non-GM cotton leaf (Cooker 312) were used. The results showed that the strip containing antibodies for the identification of Cry1Ac and Cry8Ka5 proteins was capable of correctly distinguishing between GM samples (positive result) and non-GM samples (negative result), in a high sensitivity manner. To validate the second strip test, artificially contaminated soybean with Aspergillus flavus (aflatoxin-producing fungus) was employed. Food samples, such as milk and soybean, were also evaluated for the presence of aflatoxins. The strip test was capable to distinguish between samples with and without aflatoxins samples, at a sensitivity concentration of 0,5 μg/Kg. Therefore, these results suggest that the strip tests developed in this study can be a potential tool as a rapid and cost-effective method for detection of insect resistant GM crops expressing Cry1Ac and Cry8Ka5 and aflatoxins from food samples.
Resumo:
The expansion of cultivated areas with genetically modified crops (GM) is a worldwide phenomenon, stimulating regulatory authorities to implement strict procedures to monitor and verify the presence of GM varieties in agricultural crops. With the constant growing of plant cultivating areas all over the world, consumption of aflatoxin-contaminated food also increased. Aflatoxins correspond to a class of highly toxic contaminants found in agricultural products that can have harmful effects on human and animal health. Therefore, the safety and quality evaluation of agricultural products are important issues for consumers. Lateral flow tests (strip tests) is a promising method for the detection both proteins expressed in GM crops and aflatoxins-contaminated food samples. The advantages of this technique include its simplicity, rapidity and cost-effective when compared to the conventional methods. In this study, two novel and sensitive strip tests assay were developed for the identification of: (i) Cry1Ac and Cry8Ka5 proteins expressed in GM cotton crops and; (ii) aflatoxins from agricultural products. The first strip test was developed using a sandwhich format, while the second one was developed using a competitive format. Gold colloidal nanoparticles were used as detector reagent when coated with monoclonal antibodies. An anti-species specific antibody was sprayed at the nitrocellulose membrane to be used as a control line. To validate the first strip test, GM (Bollgard I® e Planta 50- EMBRAPA) and non-GM cotton leaf (Cooker 312) were used. The results showed that the strip containing antibodies for the identification of Cry1Ac and Cry8Ka5 proteins was capable of correctly distinguishing between GM samples (positive result) and non-GM samples (negative result), in a high sensitivity manner. To validate the second strip test, artificially contaminated soybean with Aspergillus flavus (aflatoxin-producing fungus) was employed. Food samples, such as milk and soybean, were also evaluated for the presence of aflatoxins. The strip test was capable to distinguish between samples with and without aflatoxins samples, at a sensitivity concentration of 0,5 μg/Kg. Therefore, these results suggest that the strip tests developed in this study can be a potential tool as a rapid and cost-effective method for detection of insect resistant GM crops expressing Cry1Ac and Cry8Ka5 and aflatoxins from food samples.
Resumo:
This study aimed to evaluate the development and reproduction of the black armyworm, Spodoptera cosmioides when larvae fed on leaves of Bt-corn hybrids, expressing a single Cry1F and also Cry1F, Cry1A.105 and Cry2Ab2 in pyramided corn and their non-Bt-isoline (hybrid 2B688), as well as on leaves of two soybean isolines expressing the Cry1Ac protein and its non-Bt isoline (A5547-227). We also assessed the effect of these Bt and non-Bt plants on the leaf consumption rate of S. cosmioides larvae. This pest was unable to develop when fed on any of the corn isolines (Bt and non-Bt). When both 1st and 3rd instar larvae were fed on corn leaf, mortality was 100% in both Bt and non-Bt corn. In contrast, when corn leaves were offered to 5th instar larvae, there were survivors. Defoliation and leaf consumption was higher with non-Bt corn than with both of the Bt corn isolines. There was no negative effect of Bt soybean leaves on the development and reproduction of S. cosmioides with respect to all evaluated parameters. Our study indicates that both Bt and non-Bt corn adversely affect the development of S. cosmioides while Bt soybean did not affect its biology, suggesting that this lepidopteran has major potential to become an important pest in Bt soybean crops.