468 resultados para Crowns.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: the aim of this investigation was to evaluate the cervical adaptation of metal crowns under several conditions, namely (1) variations in the cervical finish line of the preparation, (2) application of internal relief inside the crowns, and (3) cementation using different luting materials. Method and Materials: One hundred eighty stainless-steel master dies were prepared simulating full crown preparations: 60 in chamfer (CH), 60 in 135-degree shoulder (OB), and 60 in rounded shoulder (OR). The finish lines were machined at approximate dimensions of a molar tooth preparation (height: 5.5 mm; cervical diameter: 8 mm; occlusal diameter: 6.4 mm; taper degree: 6; and cervical finish line width: 0.8 mm). One hundred eighty corresponding copings with the same finish lines were fabricated. A 30-mu m internal relief was machined 0.5 mm above the cervical finish line in 90 of these copings. The fit of the die and the coping was measured from all specimens (L0) prior to cementation using an optical microscope. After manipulation of the 3 types of cements (zinc phosphate, glass-ionomer, and resin cement), the coping was luted on the corresponding standard master die under 5-kgf loading for 4 minutes. Vertical discrepancy was again measured (L1), and the difference between L1 and L0 indicated the cervical adaptation. Results: Significant influence of the finish line, cement type, and internal relief was observed on the cervical adaptation (P < .001). The CH type of cervical finish line resulted in the best cervical adaptation of the metal crowns regardless of the cement type either with or without internal relief (36.6 +/- 3 to 100.8 +/- 4 mu m) (3-way analysis of variance and Tukey's test, alpha = .05). The use of glass-ionomer cement resulted in the least cervical discrepancy (36.6 +/- 3 to 115 +/- 4 mu m) than those of other cements (45.2 +/- 4 to 130.3 +/- 2 mu m) in all conditions. Conclusion: the best cervical adaptation was achieved with the chamfer type of finish line. The internal relief improved the marginal adaptation significantly, and the glass-ionomer cement led to the best cervical adaptation, followed by zinc phosphate and resin cement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AimTo evaluate prospectively the clinical and radiographic outcomes after 2 years of loading of 6 mm long moderately rough implants supporting single crowns in the posterior regions.Material and methodsForty SLActive Straumann (R) short (6 mm) implants were placed in 35 consecutively treated patients. Nineteen implants, 4.1 mm in diameter, and 21 implants, 4.8 mm in diameter, were installed. Implants were loaded after 6 weeks of healing. Implant survival rate, marginal bone loss and resonance frequency analysis (RFA) were evaluated at different intervals. The clinical crown/implant ratio was also calculated.ResultsTwo out of 40 implants were lost before loading. Hence, the survival rate before loading was 95%. No further technical or biological complications were encountered during the 2-year follow-up. The mean marginal bone loss before loading was 0.34 +/- 0.38 mm. After loading, the mean marginal bone loss was 0.23 +/- 0.33 and 0.21 +/- 0.39 mm at the 1- and 2-year follow-ups. The RFA values increased between insertion (70.2 +/- 9) and the 6-week evaluation (74.8 +/- 6.1). The clinical crown/implant ratio increased with time from 1.5 at the delivery of the prosthesis to 1.8 after 2 years of loading.ConclusionShort implants (6 mm) with a moderately rough surface loaded early (after 6 weeks) during healing yielded high implant survival rates and moderate loss of bone after 2 years of loading. Longer observation periods are needed to draw more definite conclusions on the reliability of short implants supporting single crowns.To cite this article:Rossi F, Ricci E, Marchetti C, Lang NP, Botticelli D. Early loading of single crowns supported by 6-mm-long implants with a moderately rough surface: a prospective 2-year follow-up cohort study.Clin. Oral Impl. Res. 21, 2010; 937-943.doi: 10.1111/j.1600-0501.2010.01942.x.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the adaptation of titanium crowns obtained by Rematitan Plus investment, specific for titanium, is not recognized to be suitable, this study evaluated the effect of the concentration of the specific liquid and the temperature of the mold of investments on the internal misfit of crowns cast on commercially pure titanium. Individual dies of epoxy resin were obtained, representing teeth prepared for full-crown restoration with a 6-degree axial surface convergence angle and shoulder (1.0 mm). For the waxing of each crown, a ring-shaped stainless steel matrix (8.0mm internal diameter; 7.5 mm height) was adapted above the individual dies of epoxy resin. The Rematian Plus investment was mixed according to the manufacturer's instructions using two different concentrations of the specific liquid: 100%, 75%. Casting was performed in a Discovery Plasma Ar-arc vacuum-pressure casting machine with molds at temperatures of 430°C, 515°C and 600°C. The crowns were cleaned individually in a solution (1% HF + 13% HNO3) for 10 min using a ultrasonic cleaner, with no internal adaptations, and luted with zinc phosphate cement under a 5 kg static load. The crown and die assemblies were embedded in resin and sectioned longitudinally. The area occupied by cement was observed using stereoscopic lens (10X) and measured by the Leica Qwin image analysis system (mm2). The data for each experimental condition (n=8) were analyzed by Kruskal-Wallis non-parametric test (á=0.05). The results showed that liquid dilution and the increase in mold temperature did not significantly influence the levels of internal fit of the cast titanium crowns. The lowest means (±SD) of internal misfit were obtained for the 430°C/100%: (7.25 mm2 ±1.59) and 600°C/100% (8.8 mm2 ±2.25) groups, which presented statistically similar levels of internal misfit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several studies have reported the benefits of sonic and/or ultrasonic instrumentation for root debridement, with most of them focusing on changes in periodontal clinical parameters. The present study investigated possible alterations in the tensile bond strength of crowns cemented with zinc phosphate cement to natural teeth after ultrasonic instrumentation. Forty recently extracted intact human third molars were selected, cleaned and stored in physiologic serum at 4°C. They received standard preparations, at a 16° convergence angle, and AgPd alloy crowns. The crowns were cemented with zinc phosphate cement and then divided into four groups of 10 teeth each. Each group was then subdivided into two subgroups, with one of the subgroups being submitted to 5,000 thermal cycles ranging from 55 ± 2 to 5 ± 2°C, while the other was not. Each group was submitted to ultrasonic instrumentation for different periods of time: group 1 - 0 min (control), group 2 - 5 min, group 3 - 10 min, and group 4 - 15 min. Tensile bond strength tests were performed with an Instron testing machine (model 4310). Statistical analysis was performed using ANOVA and Tukey's test at the 5% level of significance. A significant reduction in the tensile bond strength of crowns cemented with zinc phosphate and submitted to thermal cycles was observed at 15 min (196.75 N versus 0 min = 452.01 N, 5 min = 444.23 N and 10 min = 470.85 N). Thermal cycling and ultrasonic instrumentation for 15 min caused a significant reduction in tensile bond strength (p < .05).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study aimed to evaluate the role of the implant/abutment system on torque maintenance of titanium retention screws and the vertical misfit of screw-retained implant-supported crowns before and after mechanical cycling. Materials and Methods: Three groups were studied: morse taper implants with conical abutments (MTC group), external-hexagon implants with conical abutments (EHC group), and external-hexagon implants with UCLA abutments (EHU group). Metallic crowns casted in cobalt-chromium alloy were used (n = 10). Retention screws received insertion torque and, after 3 minutes, initial detorque was measured. Crowns were retightened and submitted to cyclic loading testing under oblique loading (30 degrees) of 130 +/- 10 N at 2 Hz of frequency, totaling 1 x 10(6) cycles. After cycling, final detorque was measured. Vertical misfit was measured using a stereomicroscope. Data were analyzed by analysis of variance, Tukey test, and Pearson correlation test (P < .05). Results: All detorque values were lower than the insertion torque both before and after mechanical cycling. No statistically significant difference was observed among groups before mechanical cycling. After mechanical cycling, a statistically significantly lower loss of detorque was verified in the MTC group in comparison to the EHC group. Significantly lower vertical misfit values were noted after mechanical cycling but there was no difference among groups. There was no significant correlation between detorque values and vertical misfit. Conclusions: All groups presented a significant decrease of torque before and after mechanical cycling. The morse taper connection promoted the highest torque maintenance. Mechanical cycling reduced the vertical misfit of all groups, although no significant correlation between vertical misfit and torque loss was found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate and compare the reliability of implant-supported single crowns cemented onto abutments retained with coated (C) or noncoated (NC) screws and onto platform-switched abutments with coated screws. Materials and Methods: Fifty-four implants (DT Implant 4-mm Standard Platform, Intra-Lock International) were divided into three groups (n = 18 each) as follows: matching-platform abutments secured with noncoated abutment screws (MNC); matching-platform abutments tightened with coated abutment screws (MC); and switched-platform abutments secured with coated abutment screws (SC). Screws were characterized by scanning electron microscopy and x-ray photoelectron spectroscopy (XPS). The specimens were subjected to step-stress accelerated life testing. Use-level probability Weibull curves and reliability for 100,000 cycles at 200 N and 300 N (90% two-sided confidence intervals) were calculated. Polarized light and scanning electron microscopes were used for fractographic analysis. Results: Scanning electron microscopy revealed differences in surface texture; noncoated screws presented the typical machining grooves texture, whereas coated screws presented a plastically deformed surface layer. XPS revealed the same base components for both screws, with the exception of higher degrees of silicon in the SiO2 form for the coated samples. For 100,000 cycles at 300 N, reliability values were 0.06 (0.01 to 0.16), 0.25 (0.09 to 0.45), and 0.25 (0.08 to 0.45), for MNC, MC, and SC, respectively. The most common failure mechanism for MNC was fracture of the abutment screw, followed by bending, or its fracture, along with fracture of the abutment or implant. Coated abutment screws most commonly fractured along with the abutment, irrespective of abutment type. Conclusion: Reliability was higher for both groups with the coated screw than with the uncoated screw. Failure modes differed between coated and uncoated groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of the core substrate type (dentin and composite resin) on the retention of crowns made of yttrium oxide stabilized tetragonal zirconia polycrystal (Y-TZP), submitted to three inner surface conditionings. For this purpose, 72 freshly extracted molars were embedded in acrylic resin, perpendicular to the long axis, and prepared for full crowns: 36 specimens had crown preparations in dentin; the remaining 36 teeth had the crowns removed, and crown preparations were reconstructed with composite resin plus fiber posts with dimensions identical to the prepared dentin. The preparations were impressed using addition silicone, and 72 Y-TZP copings for the tensile test were produced. Cementation was performed with a dual-cured cement containing phosphate monomers. For cementation, the crown preparation (dentin or resin) was conditioned with the adhesive system, and the ceramic was subjected to one of three surface treatments: isopropyl alcohol, tribochemical silica coating, or thin low-fusing glassy porcelain layer application plus silanization. After 24 hours, all specimens were submitted to thermocycling (6000 cycles) and placed in a special tensile testing device in a universal testing machine to determine failure loads. The failure modes of all samples were analyzed under a stereomicroscope. Two-way analysis of variance showed that the surface treatment and substrate type (alpha=0.05) affected the tensile retention results. The dentin substrate presented the highest tensile retention values, regardless of the surface treatment. When the substrate was resin, the tribochemical silica coating and low-fusing glaze application plus silanization groups showed the higher retention values.