1000 resultados para Crop Improvement
Resumo:
Acrylamide is a neurotoxin and possible carcinogen, and concern has been voiced over human exposure to acrylamide in cooked foods. Processed potato products such as crisps and French fries are often cited as being particularly high in acrylamide. In this manuscript a sub-set of clonal progeny from a specific tetraploid potato breeding population has been assessed for acrylamide forming potential in stored tubers processed into crisps. The clone with the lowest acrylamide content in crisps had both low reducing sugars and asparagine contents. Our data show that, in the segregating breeding population used, both asparagine and reducing sugars levels needed to be taken into account to explain most of the variation in acrylamide and that selection for low levels of both metabolites should be targeted for crop improvement.
Resumo:
The low availability of zinc (Zn) in soils and crops affects dietary Zn intake worldwide. This study sought to determine if the natural genetic variation in shoot Zn concentrations (Zn(shoot)) is sufficient to pursue a crop improvement breeding strategy in a leafy vegetable crop. The gene-pool of Brassica oleracea L. was sampled using a large (n = 376) diversity foundation set (DFS), representing almost all species-wide common allelic variation, and 74 commercial varieties (mostly F(1)). The DFS genotypes were grown at low and high soil phosphorus (P) levels under glasshouse and field conditions, and also in a Zn-deficient soil, with or without Zn-fertilisation, in a glasshouse. Despite the large variation in Zn(shoot) among genotypes, environment had a profound effect on Zn(shoot) The heritability of Zn(shoot) was significant, but relatively low, among 90 doubled-haploid (DH) lines from a mapping population. While several quantitative trait loci (QTL) associated with Zn(shoot) occurred on chromosomes C2, C3, C5, C7, and C9, these were generally weak and conditional upon growth conditions. Breeding for Zn(shoot) in B. oleracea is therefore likely to be challenging. Shoot P concentrations increased substantially in all genotypes under low soil Zn conditions. Conversely, only some genotypes had increased Zn(shoot) at low soil P levels. Sufficient natural genetic variation may therefore exist to study some of the interactions between Zn and P nutrition.
Resumo:
Gene expression is a quantitative trait that can be mapped genetically in structured populations to identify expression quantitative trait loci (eQTL). Genes and regulatory networks underlying complex traits can subsequently be inferred. Using a recently released genome sequence, we have defined cis- and trans-eQTL and their environmental response to low phosphorus (P) availability within a complex plant genome and found hotspots of trans-eQTL within the genome. Interval mapping, using P supply as a covariate, revealed 18,876 eQTL. trans-eQTL hotspots occurred on chromosomes A06 and A01 within Brassica rapa; these were enriched with P metabolism-related Gene Ontology terms (A06) as well as chloroplast-and photosynthesis-related terms (A01). We have also attributed heritability components to measures of gene expression across environments, allowing the identification of novel gene expression markers and gene expression changes associated with low P availability. Informative gene expression markers were used to map eQTL and P use efficiency-related QTL. Genes responsive to P supply had large environmental and heritable variance components. Regulatory loci and genes associated with P use efficiency identified through eQTL analysis are potential targets for further characterization and may have potential for crop improvement.
Resumo:
Background and Aims: Phosphate (Pi) deficiency in soils is a major limiting factor for crop growth worldwide. Plant growth under low Pi conditions correlates with root architectural traits and it may therefore be possible to select these traits for crop improvement. The aim of this study was to characterize root architectural traits, and to test quantitative trait loci (QTL) associated with these traits, under low Pi (LP) and high Pi (HP) availability in Brassica napus. Methods: Root architectural traits were characterized in seedlings of a double haploid (DH) mapping population (n = 190) of B. napus 'Tapidor' x 'Ningyou 7' (TNDH) using high-throughput phenotyping methods. Primary root length (PRL), lateral root length (LRL), lateral root number (LRN), lateral root density (LRD) and biomass traits were measured 12 d post-germination in agar at LP and HP. Key Results: In general, root and biomass traits were highly correlated under LP and HP conditions. 'Ningyou 7' had greater LRL, LRN and LRD than 'Tapidor', at both LP and HP availability, but smaller PRL. A cluster of highly significant QTL for LRN, LRD and biomass traits at LP availability were identified on chromosome A03; QTL for PRL were identified on chromosomes A07 and C06. Conclusions: High-throughput phenotyping of Brassica can be used to identify root architectural traits which correlate with shoot biomass. It is feasible that these traits could be used in crop improvement strategies. The identification of QTL linked to root traits under LP and HP conditions provides further insights on the genetic basis of plant tolerance to P deficiency, and these QTL warrant further dissection.
Resumo:
Background and Aims Root traits can be selected for crop improvement. Techniques such as soil excavations can be used to screen root traits in the field, but are limited to genotypes that are well-adapted to field conditions. The aim of this study was to compare a low-cost, high-throughput root phenotyping (HTP) technique in a controlled environment with field performance, using oilseed rape (OSR; Brassica napus) varieties. Methods Primary root length (PRL), lateral root length and lateral root density (LRD) were measured on 14-d-old seedlings of elite OSR varieties (n = 32) using a ‘pouch and wick’ HTP system (∼40 replicates). Six field experiments were conducted using the same varieties at two UK sites each year for 3 years. Plants were excavated at the 6- to 8-leaf stage for general vigour assessments of roots and shoots in all six experiments, and final seed yield was determined. Leaves were sampled for mineral composition from one of the field experiments. Key Results Seedling PRL in the HTP system correlated with seed yield in four out of six (r = 0·50, 0·50, 0·33, 0·49; P < 0·05) and with emergence in three out of five (r = 0·59, 0·22, 0·49; P < 0·05) field experiments. Seedling LRD correlated positively with leaf concentrations of some minerals, e.g. calcium (r = 0·46; P < 0·01) and zinc (r = 0·58; P < 0·001), but did not correlate with emergence, general early vigour or yield in the field. Conclusions Associations between PRL and field performance are generally related to early vigour. These root traits might therefore be of limited additional selection value, given that vigour can be measured easily on shoots/canopies. In contrast, LRD cannot be assessed easily in the field and, if LRD can improve nutrient uptake, then it may be possible to use HTP systems to screen this trait in both elite and more genetically diverse, non-field-adapted OSR.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Wild Arachis germplasm includes potential forage species, such as the rhizomatous Arachis glabrata and the stoloniferous A. pinto and A. repens. Commercial cultivars of A. pintoi have already been released in Australia and in several Latin American countries, and most of these cultivars were derived from a single accession of A. pintoi (GK 12787). Arachis repens is less productive as a forage plant than is A. pintoi. However, it can be crossed with A. pintoi, and thus has good potential as germplasm for the improvement of A. pintoi. Arachis repens is also used as an ornamental plant and ground cover. Many new accessions of these two stoloniferous species are now available, and they harbor significant genetic variability beyond that available in the few older accessions, previously available. Therefore, these new accessions need to be conserved, documented and considered in terms of their potential for crop improvement and direct commercial use. Sixty-four accessions of this new germplasm were analyzed using RAPD analysis. Most of the accessions of A. repens grouped together into a clearly distinct group. In general, the accessions from the distinct valleys of the Jequitinhonha, Sao Francisco and Parana rivers did not group together, suggesting there is not a tight relation between dispersion by rivers and the geographic distribution of genetic variation in these species.
Resumo:
The aim of this paper is to study the cropping system as complex one, applying methods from theory of dynamic systems and from the control theory to the mathematical modeling of the biological pest control. The complex system can be described by different mathematical models. Based on three models of the pest control, the various scenarios have been simulated in order to obtain the pest control strategy only through natural enemies' introduction. © 2008 World Scientific Publishing Company.
Resumo:
The fig tree (Ficus carica L.) is a fruit tree of great world importance and, therefore, the genetic improvement becomes an important field of research for the crop improvement, being necessary to gather information on this species, mainly regarding its genetic variability so that appropriate propagation projects and management are made. However, the fig, in Brazil, is all produced from only one cultivar, Roxo de Valinhos, which produces seedless fruit, making impossible the conventional breeding. So, the fig breeding through induced mutagenic becomes a very important research line, greatly contributing to the fig culture development. The objective of this study was to select fig plants formed by cuttings treated with gamma ray. The plants used were obtained from buds of the cv. Roxo de Valinhos. The cuttings were irradiated with gamma rays in an irradiator Gamma Cell at 10 cm from the tip of the cutting, at doses of 30 Gy with dose rate of 238 Gy/h. The experiment consisted of 450 treatments, where each formed plant was a treatment. The treatments were numbered sequentially from 1 to 450 and spaced 2.5 x 1.5 m. It was evaluated the vegetative and the fruits characteristics, and the incidence of major crop pests and diseases. The analysis data showed that there is genetic variability among treatments and that the plants under numbers 1, 5, 20, 79, 164, 189, 194, 201, 221, 214, 258, 301, 322, 392, 433 and 440 are probably genetic mutants that should be tested as commercial orchards.
Resumo:
A growing world population, changing climate and limiting fossil fuels will provide new pressures on human production of food, medicine, fuels and feed stock in the twenty-first century. Enhanced crop production promises to ameliorate these pressures. Crops can be bred for increased yields of calories, starch, nutrients, natural medicinal compounds, and other important products. Enhanced resistance to biotic and abiotic stresses can be introduced, toxins removed, and industrial qualities such as fibre strength and biofuel per mass can be increased. Induced and natural mutations provide a powerful method for the generation of heritable enhanced traits. While mainly exploited in forward, phenotype driven, approaches, the rapid accumulation of plant genomic sequence information and hypotheses regarding gene function allows the use of mutations in reverse genetic approaches to identify lesions in specific target genes. Such gene-driven approaches promise to speed up the process of creating novel phenotypes, and can enable the generation of phenotypes unobtainable by traditional forward methods. TILLING (Targeting Induced Local Lesions IN Genome) is a high-throughput and low cost reverse genetic method for the discovery of induced mutations. The method has been modified for the identification of natural nucleotide polymorphisms, a process called Ecotilling. The methods are general and have been applied to many species, including a variety of different crops. In this chapter the current status of the TILLING and Ecotilling methods and provide an overview of progress in applying these methods to different plant species, with a focus on work related to food production for developing nations.
Resumo:
Crop gene pools have adapted to and sustained the demands of agricultural systems for thousands of years. Yet, very little is known about their content, distribution, architecture, or circuitry. The presumably shallow elite gene pools often continue to yield genetic gains while the exotic pools remain mostly untapped, uncharacterized, and underutilized. The concept and content of a crop’s gene pools are being changed by advancements in plant science and technology. In the first generation of plant genomics, DNA markers have refined some perceptions of genetic variation by providing a glimpse of a primary source, DNA polymorphism. The markers have provided new and more powerful ways of assessing genetic relationships, diversity, and merit by infusing genetic information for the first time in many scenarios or in a more comprehensive manner for others. As a result, crop gene pools may be supplemented through more rapid and directed methods from a greater variety of sources. Previously limited by the barriers of sexual reproduction, the native gene pools will soon be complemented by another gene pool (transgenes) and perhaps by other native exotic gene pools through comparative analyses of plants’ biological repertoire. Plant genomics will be an important force of change for crop improvement. The plant science community and crop gene pools may be united and enriched as never before. Also, the genomes and gene pools, the products of evolution and crop domestication, will be reduced and subjected to the vagaries and potential divisiveness of intellectual property considerations. Let the gains begin.
Resumo:
Full title: 1916-17, Report of the Maryland agricultural society including the reports of the state horticultural society, the Crop improvement association, the State dairymen's association, the State beekeepers' association -- 1918-20, same title, with the addition of the Vegetable growers' association and the Sheep growers' association -- 1921, same title as 1918-20 with the addition of the Tobacco growers' association -- 1922, Report of the Maryland agricultural society, the Maryland farm bureau federation, including the reports of the State horticultural society, the Crop improvement association, the State dairymen's association, the State beekeepers' association, the Vegetable growers' association, the Sheep growers' association, the Tobacco growers' association, County farm bureau federations -- 1923- Report of the Maryland agricultural society, the Maryland farm bureau federation, including the reports of the Maryland state horticultural society, the Maryland crop improvement association, the Maryland state dairymen's association, the Maryland state beekeepers' association, the Maryland vegetable growers' association, the Maryland sheep growers' association, the Maryland tobacco growers' association, the Maryland swine growers' association.
Resumo:
Price current-grain reporter: consolidation of Cincinnati price current, The National hay & grain reporter, Grain man's #, Western crop improvement advocate and crop reporter.
Resumo:
1904/05-1909/10 Issued by the Association under Its Earlier Name: Minnesota Field Crop Breeders' Association