974 resultados para Crop Forecasting System
Resumo:
Wheat (Triticum aestivum L.) blast caused by Pyricularia grisea is a new disease in Brazil and no resistant cultivars are available. The interactions between temperature and wetness durations have been used in many early warning systems. Hence, growth chamber experiments to assess the effect of different temperatures (10, 15, 20, 25, 30 and 35ºC) and the duration of spike-wetness (0, 5, 10, 15, 20, 25, 30, 35 and 40 hours) on the intensity of blast in cultivar BR23 were carried out. Each temperature formed an experiment and the duration of wetness the treatments. The highest blast intensity was observed at 30°C and increased as the duration of the wetting period increased while the lowest occurred at 25°C and 10 hours of spike wetness. Regardless of the temperature, no symptoms occurred when the wetting period was less than 10 hours but at 25°C and a 40 h wetting period blast intensity exceeded 85%. These variations in blast intensity as a function of temperature are explained by a generalized beta model and as a function of the duration of spike wetness by the Gompertz model. Disease intensity was modeled as a function of both temperature and the durations of spike wetness and the resulting equation provided a precise description of the response of P. grisea to temperatures and the durations of spike wetness. This model was used to construct tables that can be used to predict the intensity of P. grisea wheat blast based on the temperatures and the durations of wheat spike wetness obtained in the field.
Resumo:
A seasonal forecasting system that is capable of skilfully predicting rainfall totals on a regional scale would be of great value to Ethiopia. Here, we describe how a statistical model can exploit the teleconnections described in part 1 of this pair of papers to develop such a system. We show that, in most cases, the predictors selected objectively by the statistical model can be interpreted in the light of physical teleconnections with Ethiopian rainfall, and discuss why, in some cases, unexpected regions are chosen as predictors. We show that the forecast has skill in all parts of Ethiopia, and argue that this method could provide the basis of an operational seasonal forecasting system for Ethiopia.
Resumo:
It is well established that crop production is inherently vulnerable to variations in the weather and climate. More recently the influence of vegetation on the state of the atmosphere has been recognized. The seasonal growth of crops can influence the atmosphere and have local impacts on the weather, which in turn affects the rate of seasonal crop growth and development. Considering the coupled nature of the crop-climate system, and the fact that a significant proportion of land is devoted to the cultivation of crops, important interactions may be missed when studying crops and the climate system in isolation, particularly in the context of land use and climate change. To represent the two-way interactions between seasonal crop growth and atmospheric variability, we integrate a crop model developed specifically to operate at large spatial scales (General Large Area Model for annual crops) into the land surface component of a global climate model (GCM; HadAM3). In the new coupled crop-climate model, the simulated environment (atmosphere and soil states) influences growth and development of the crop, while simultaneously the temporal variations in crop leaf area and height across its growing season alter the characteristics of the land surface that are important determinants of surface fluxes of heat and moisture, as well as other aspects of the land-surface hydrological cycle. The coupled model realistically simulates the seasonal growth of a summer annual crop in response to the GCM's simulated weather and climate. The model also reproduces the observed relationship between seasonal rainfall and crop yield. The integration of a large-scale single crop model into a GCM, as described here, represents a first step towards the development of fully coupled crop and climate models. Future development priorities and challenges related to coupling crop and climate models are discussed.
Resumo:
A basic data requirement of a river flood inundation model is a Digital Terrain Model (DTM) of the reach being studied. The scale at which modeling is required determines the accuracy required of the DTM. For modeling floods in urban areas, a high resolution DTM such as that produced by airborne LiDAR (Light Detection And Ranging) is most useful, and large parts of many developed countries have now been mapped using LiDAR. In remoter areas, it is possible to model flooding on a larger scale using a lower resolution DTM, and in the near future the DTM of choice is likely to be that derived from the TanDEM-X Digital Elevation Model (DEM). A variable-resolution global DTM obtained by combining existing high and low resolution data sets would be useful for modeling flood water dynamics globally, at high resolution wherever possible and at lower resolution over larger rivers in remote areas. A further important data resource used in flood modeling is the flood extent, commonly derived from Synthetic Aperture Radar (SAR) images. Flood extents become more useful if they are intersected with the DTM, when water level observations (WLOs) at the flood boundary can be estimated at various points along the river reach. To illustrate the utility of such a global DTM, two examples of recent research involving WLOs at opposite ends of the spatial scale are discussed. The first requires high resolution spatial data, and involves the assimilation of WLOs from a real sequence of high resolution SAR images into a flood model to update the model state with observations over time, and to estimate river discharge and model parameters, including river bathymetry and friction. The results indicate the feasibility of such an Earth Observation-based flood forecasting system. The second example is at a larger scale, and uses SAR-derived WLOs to improve the lower-resolution TanDEM-X DEM in the area covered by the flood extents. The resulting reduction in random height error is significant.
Resumo:
We assess Indian summer monsoon seasonal forecasts in GloSea5-GC2, the Met Office fully coupled subseasonal to seasonal ensemble forecasting system. Using several metrics, GloSea5-GC2 shows similar skill to other state-of-the-art forecast systems. The prediction skill of the large-scale South Asian monsoon circulation is higher than that of Indian monsoon rainfall. Using multiple linear regression analysis we evaluate relationships between Indian monsoon rainfall and five possible drivers of monsoon interannual variability. Over the time period studied (1992-2011), the El Nino-Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD) are the most important of these drivers in both observations and GloSea5-GC2. Our analysis indicates that ENSO and its teleconnection with the Indian rainfall are well represented in GloSea5-GC2. However, the relationship between the IOD and Indian rainfall anomalies is too weak in GloSea5-GC2, which may be limiting the prediction skill of the local monsoon circulation and Indian rainfall. We show that this weak relationship likely results from a coupled mean state bias that limits the impact of anomalous wind forcing on SST variability, resulting in erroneous IOD SST anomalies. Known difficulties in representing convective precipitation over India may also play a role. Since Indian rainfall responds weakly to the IOD, it responds more consistently to ENSO than in observations. Our assessment identifies specific coupled biases that are likely limiting GloSea5-GC2 prediction skill, providing targets for model improvement.
Resumo:
As a highly urbanized and flood prone region, Flanders has experienced multiple floods causing significant damage in the past. In response to the floods of 1998 and 2002 the Flemish Environment Agency, responsible for managing 1 400 km of unnavigable rivers, started setting up a real time flood forecasting system in 2003. Currently the system covers almost 2 000 km of unnavigable rivers, for which flood forecasts are accessible online (www.waterinfo.be). The forecasting system comprises more than 1 000 hydrologic and 50 hydrodynamic models which are supplied with radar rainfall, rainfall forecasts and on-site observations. Forecasts for the next 2 days are generated hourly, while 10 day forecasts are generated twice a day. Additionally, twice daily simulations based on percentile rainfall forecasts (from EPS predictions) result in uncertainty bands for the latter. Subsequent flood forecasts use the most recent rainfall predictions and observed parameters at any time while uncertainty on the longer-term is taken into account. The flood forecasting system produces high resolution dynamic flood maps and graphs at about 200 river gauges and more than 3 000 forecast points. A customized emergency response system generates phone calls and text messages to a team of hydrologists initiating a pro-active response to prevent upcoming flood damage. The flood forecasting system of the Flemish Environment Agency is constantly evolving and has proven to be an indispensable tool in flood crisis management. This was clearly the case during the November 2010 floods, when the agency issued a press release 2 days in advance allowing water managers, emergency services and civilians to take measures.
Resumo:
The use of crop rotation and manure application can provide sustainability for an agricultural production system by improving soil quality and increasing nutrient use efficiency. This study aimed to evaluate the effect of mineral, organic and mineral+organic fertilization on grain yield and on soil phosphorus and potassium balance, in two crop systems under no-till, with and without rotation of cover crops. The experiment was carried out from 2006 to 2008 on a clayey Rhodic Hapludox in Marechal Candido Rondon, Parana State, Brazil. The cropping sequence in the rotation system involving cover crops was black oat + hairy vetch + forage turnip/corn/pigeon pea/wheat/mucuna + brachiaria + sunn hemp, and in the succession system was wheat/corn/wheat/soybean. Organic and mineral+organic fertilizations consisted of the application of solely manure and manure combined with mineral fertilizer, respectively. Soil P and K balances were calculated after the second year of the experiment, up to a depth of 0.40 m. First year corn yields were higher in the crop succession system accompanied by mineral fertilization. In the second year, wheat and soybean yield did not vary between crop systems and nutrient sources, demonstrating the residual effect of crop rotation and manure use. Crop rotation with cover crops resulted in an increase in soil K levels by promoting the recycling of this nutrient in the soil. In both crop systems, the application of mineral and organic fertilizers - either in isolation or in combination - resulted in a negative soil P and K balance in the short term. This represents a threat to the sustainability of the agricultural production system in the long term, due to the depletion of soil nutrient reserves.
Resumo:
Pós-graduação em Ciências Ambientais - Sorocaba
Resumo:
The adoption of no-till system (NTS) combined with crop-livestock integration (CLI) has been a strategy promoted in Brazil, aiming to maximize areas yield and increase agribusiness profitability. This study aimed to evaluate grains yield and phytotechnical attributes from maize and soybean culture by CLI system under NTS after winter annual pure and diversified pastures with the absence or presence of grazing animals. The experiment was installed in Castro (Parana State, Brazil) on in a dystrophic Humic Rhodic Hapludox with a clay texture, using experimental design of randomized complete blocks in 4 x 2 factorial scheme with three replications. Treatments included four pasture combinations (diversified or pure) and animal categories (light and heavy) subjected or not to grazing animals during the winter. During 2008/09 and 2009/10 summers, the area was cultivated with soybeans and maize, respectively, with yield assessment of grains and phytotechnical attributes. Treatments did not alter the yield and weight of a thousand seeds (WTS) of soybeans. In maize culture, the grazing animal during the winter increased the plant population and grains yield, but gave slight decrease in WTS. Pasture combinations (diversified or pure) and animal categories (light and heavy) did not interfere in soybean culture, but benefited the maize crop.
Resumo:
A new methodology is being devised for ensemble ocean forecasting using distributions of the surface wind field derived from a Bayesian Hierarchical Model (BHM). The ocean members are forced with samples from the posterior distribution of the wind during the assimilation of satellite and in-situ ocean data. The initial condition perturbations are then consistent with the best available knowledge of the ocean state at the beginning of the forecast and amplify the ocean response to uncertainty only in the forcing. The ECMWF Ensemble Prediction System (EPS) surface winds are also used to generate a reference ocean ensemble to evaluate the performance of the BHM method that proves to be eective in concentrating the forecast uncertainty at the ocean meso-scale. An height month experiment of weekly BHM ensemble forecasts was performed in the framework of the operational Mediterranean Forecasting System. The statistical properties of the ensemble are compared with model errors throughout the seasonal cycle proving the existence of a strong relationship between forecast uncertainties due to atmospheric forcing and the seasonal cycle.
Resumo:
A new Coastal Rapid Environmental Assessment (CREA) strategy has been developed and successfully applied to the Northern Adriatic Sea. CREA strategy exploits the recent advent of operational oceanography to establish a CREA system based on an operational regional forecasting system and coastal monitoring networks of opportunity. The methodology wishes to initialize a coastal high resolution model, nested within the regional forecasting system, blending the large scale parent model fields with the available coastal observations to generate the requisite field estimates. CREA modeling system consists of a high resolution, O(800m), Adriatic SHELF model (ASHELF) implemented into the Northern Adriatic basin and nested within the Adriatic Forecasting System (AFS) (Oddo et al. 2006). The observational system is composed by the coastal networks established in the framework of ADRICOSM (ADRiatic sea integrated COastal areaS and river basin Managment system) Pilot Project. An assimilation technique exerts a correction of the initial field provided by AFS on the basis of the available observations. The blending of the two data sets has been carried out through a multi-scale optimal interpolation technique developed by Mariano and Brown (1992). Two CREA weekly exercises have been conducted: the first, at the beginning of May (spring experiment); the second in middle August (summer experiment). The weeks have been chosen looking at the availability of all coastal observations in the initialization day and one week later to validate model results, verifying our predictive skills. ASHELF spin up time has been investigated too, through a dedicated experiment, in order to obtain the maximum forecast accuracy within a minimum time. Energetic evaluations show that for the Northern Adriatic Sea and for the forcing applied, a spin-up period of one week allows ASHELF to generate new circulation features enabled by the increased resolution and its total kinetic energy to establish a new dynamical balance. CREA results, evaluated by mean of standard statistics between ASHELF and coastal CTDs, show improvement deriving from the initialization technique and a good model performance in the coastal areas of the Northern Adriatic basin, characterized by a shallow and wide continental shelf subject to substantial freshwater influence from rivers. Results demonstrate the feasibility of our CREA strategy to support coastal zone management and wish an additional establishment of operational coastal monitoring activities to advance it.
Resumo:
Environmental computer models are deterministic models devoted to predict several environmental phenomena such as air pollution or meteorological events. Numerical model output is given in terms of averages over grid cells, usually at high spatial and temporal resolution. However, these outputs are often biased with unknown calibration and not equipped with any information about the associated uncertainty. Conversely, data collected at monitoring stations is more accurate since they essentially provide the true levels. Due the leading role played by numerical models, it now important to compare model output with observations. Statistical methods developed to combine numerical model output and station data are usually referred to as data fusion. In this work, we first combine ozone monitoring data with ozone predictions from the Eta-CMAQ air quality model in order to forecast real-time current 8-hour average ozone level defined as the average of the previous four hours, current hour, and predictions for the next three hours. We propose a Bayesian downscaler model based on first differences with a flexible coefficient structure and an efficient computational strategy to fit model parameters. Model validation for the eastern United States shows consequential improvement of our fully inferential approach compared with the current real-time forecasting system. Furthermore, we consider the introduction of temperature data from a weather forecast model into the downscaler, showing improved real-time ozone predictions. Finally, we introduce a hierarchical model to obtain spatially varying uncertainty associated with numerical model output. We show how we can learn about such uncertainty through suitable stochastic data fusion modeling using some external validation data. We illustrate our Bayesian model by providing the uncertainty map associated with a temperature output over the northeastern United States.
Resumo:
Smallholder farming systems in Papua New Guinea are characterised by an integrated set of cash cropping and subsistence food cropping activities. In the Highlands provinces, the subsistence food crop sub-system is dominated by sweet potato production. Coffee dominates the cash cropping sub-system, but a limited number of food crops are also grown for cash sale. The dynamics between sub-systems can influence the scope for complementarity between, and technical efficiency of, their operations, especially in light of the seasonality of demand for household labour and management inputs within the farming system. A crucial element of these dynamic processes is diversification into commercial agricultural production, which can influence factor productivity and the efficiency of crop production where smallholders maintain a strong production base in subsistence foods. In this study we use survey data from households engaged in coffee and food crop production in the Benabena district of Eastern Highlands Province to derive technical efficiency indices for each household over two years. A stochastic input distance function approach is used to establish whether diversification economies exist and whether specialisation in coffee, subsistence food or cash food production significantly influences technical efficiency on the sampled smallholdings. Diversification economics are weakly evident between subsistence food production and both coffee and cash food production, but diseconomies of diversification are discerned between coffee and cash food production. A number of factors are tested for their effects on technical efficiency. Significant technical efficiency gains are made from diversification among broad cropping enterprises.
Resumo:
Observing system experiments (OSEs) are carried out over a 1-year period to quantify the impact of Argo observations on the Mercator Ocean 0.25° global ocean analysis and forecasting system. The reference simulation assimilates sea surface temperature (SST), SSALTO/DUACS (Segment Sol multi-missions dALTimetrie, d'orbitographie et de localisation précise/Data unification and Altimeter combination system) altimeter data and Argo and other in situ observations from the Coriolis data center. Two other simulations are carried out where all Argo and half of the Argo data are withheld. Assimilating Argo observations has a significant impact on analyzed and forecast temperature and salinity fields at different depths. Without Argo data assimilation, large errors occur in analyzed fields as estimated from the differences when compared with in situ observations. For example, in the 0–300 m layer RMS (root mean square) differences between analyzed fields and observations reach 0.25 psu and 1.25 °C in the western boundary currents and 0.1 psu and 0.75 °C in the open ocean. The impact of the Argo data in reducing observation–model forecast differences is also significant from the surface down to a depth of 2000 m. Differences between in situ observations and forecast fields are thus reduced by 20 % in the upper layers and by up to 40 % at a depth of 2000 m when Argo data are assimilated. At depth, the most impacted regions in the global ocean are the Mediterranean outflow, the Gulf Stream region and the Labrador Sea. A significant degradation can be observed when only half of the data are assimilated. Therefore, Argo observations matter to constrain the model solution, even for an eddy-permitting model configuration. The impact of the Argo floats' data assimilation on other model variables is briefly assessed: the improvement of the fit to Argo profiles do not lead globally to unphysical corrections on the sea surface temperature and sea surface height. The main conclusion is that the performance of the Mercator Ocean 0.25° global data assimilation system is heavily dependent on the availability of Argo data.
Resumo:
The coastal area along the Emilia-Romagna (ER), in the Italian side of the northern Adriatic Sea, is considered to implement an unstructured numerical ocean model with the aim to develop innovative tools for the coastal management and a forecasting system for the storm surge risk reduction. The Adriatic Sea has been the focus of several studies because of its peculiar dynamics driven by many forcings acting at basin and local scales. The ER coast is particularly exposed to storm surge events. In particular conditions, winds, tides and seicehs may combine and contribute to the flooding of the coastal area. The global sea level rise expected in the next decades will increase even more the hazard along the ER and Adriatic coast. Reliable Adriatic and Mediterranean scale numerical ocean models are now available to allow the dynamical downscaling of very high-resolution models in limited coastal areas. In this work the numerical ocean model SHYFEM is implemented in the Goro lagoon (named GOLFEM) and along the ER coast (ShyfER) to test innovative solutions against sea related coastal hazards. GOLFEM was succesfully applied to analyze the Goro lagoon dynamics and to assess the dynamical effects of human interventions through the analysis of what-if scenarios. The assessment of storm surge hazard in the Goro lagoon was carried out through the development of an ensemble storm surge forecasting system with GOLFEM using forcing from different operational meteorological and ocean models showing the fundamental importance of the boundary conditions. The ShyfER domain is used to investigate innovative solutions against storm surge related hazard along the ER coast. The seagrass is assessed as a nature-based solution (NBS) for coastal protection under present and future climate conditions. The results show negligible effects on sea level but sensible effects in reducing bottom current velocity.