918 resultados para Critical power model
Resumo:
Building Information Modeling (BIM) is the process of structuring, capturing, creating, and managing a digital representation of physical and/or functional characteristics of a built space [1]. Current BIM has limited ability to represent dynamic semantics, social information, often failing to consider building activity, behavior and context; thus limiting integration with intelligent, built-environment management systems. Research, such as the development of Semantic Exchange Modules, and/or the linking of IFC with semantic web structures, demonstrates the need for building models to better support complex semantic functionality. To implement model semantics effectively, however, it is critical that model designers consider semantic information constructs. This paper discusses semantic models with relation to determining the most suitable information structure. We demonstrate how semantic rigidity can lead to significant long-term problems that can contribute to model failure. A sufficiently detailed feasibility study is advised to maximize the value from the semantic model. In addition we propose a set of questions, to be used during a model’s feasibility study, and guidelines to help assess the most suitable method for managing semantics in a built environment.
Resumo:
O principal objetivo deste estudo foi comparar a intensidade correspondente à máxima fase estável de lactato (MLSS) e a potência crítica (PC) durante o ciclismo em indivíduos bem treinados. Seis ciclistas do sexo masculino (25,5 ± 4,4 anos, 68,8 ± 3,0kg, 173,0 ± 4,0cm) realizaram em diferentes dias os seguintes testes: exercício incremental até a exaustão para a determinação do pico de consumo de oxigênio (VO2pico) e sua respectiva intensidade (IVO2pico); cinco a sete testes de carga constante para a determinação da MLSS e da PC; e um exercício até a exaustão na PC. A MLSS foi considerada com a maior intensidade de exercício onde a concentração de lactato não aumentou mais do que 1mM entre o 10º e o 30º min de exercício. Os valores individuais de potência (95, 100 e 110% IVO2pico) e seu respectivo tempo máximo de exercício (Tlim) foram ajustados a partir do modelo hiperbólico de dois parâmetros para a determinação da PC. Embora altamente correlacionadas (r = 0,99; p = 0,0001), a PC (313,5 ± 32,3W) foi significantemente maior do que a MLLS (287,0 ± 37,8W) (p = 0,0002). A diferença percentual da PC em relação à MLSS foi de 9,5 ± 3,1%. No exercício realizado na PC, embora tenha existido componente lento do VO2 (CL = 400,8 ± 267,0 ml.min-1), o VO2pico não foi alcançado (91,1 ± 3,3 %). Com base nesses resultados pode-se concluir que a PC e a MLSS identificam diferentes intensidades de exercício, mesmo em atletas com elevada aptidão aeróbia. Entretanto, o percentual da diferença entre a MLLS e PC (9%) indica que relação entre esses dois índices pode depender da aptidão aeróbia. Durante o exercício realizado até a exaustão na PC, o CL que é desenvolvido não permite que o VO2pico seja alcançado.
Resumo:
O objetivo deste estudo foi verificar o efeito da seleção das cargas e do modelo utilizado para a determinação da PC no ergômetro de braço. Participaram do estudo oito voluntários do sexo masculino, que praticavam atividade física regularmente e eram aparentemente saudáveis. Os sujeitos realizaram quatro testes com cargas constantes mantidas até a exaustão voluntária no ergômetro de braço UBE 2462-Cybex. As cargas foram individualmente selecionadas para induzir a fadiga entre 1 e 15 minutos. Para cada sujeito, a determinação da PC foi realizada através de dois modelos lineares: potência-1/tempo e trabalho-tempo. em cada um dos modelos, foram utilizadas todas as potências (1), as três maiores (2) e as três menores (3). As PC encontradas no modelo potência-1/tempo e trabalho-tempo para a condição 3 (177,5 + 29,5; 173,9 + 33,3, respectivamente) foram significantemente menores do que as da condição 2 (190,5 + 23,2; 183,4 + 22,3, respectivamente), não existindo diferenças destas com as da condição 1 (184,2 + 25,4; 176,4 + 28,8, respectivamente). As PC determinadas no modelo potência-1/tempo para as condições 1 e 2 foram significantemente maiores do que as determinadas no modelo trabalho-tempo, não existindo diferenças para a condição 3. Pode-se concluir que as cargas selecionadas e o modelo utilizado interferem na determinação da PC encontrada no ergômetro de braço, podendo interferir no tempo de exaustão durante o exercício submáximo realizado em cargas relativas a este índice.
Resumo:
O objetivo do presente estudo foi avaliar a aptidão aeróbia em testes de caminhada com carga externa aplicada por meio da inclinação da esteira, a partir da relação não linear entre inclinação da esteira e tempo até a exaustão em velocidade fixa. Doze indivíduos do gênero masculino com 23,2 ± 2,7 anos de idade, 74,0 ± 7,9kg de massa corporal e 23,7 ± 2,5kg·(m²)-1 de IMC, realizaram duas etapas de testes de caminhada em esteira ergométrica com velocidade fixa de 5,5km·h-1 em todos os testes e sobrecarga de intensidade aplicada por meio de inclinação da esteira (%). A etapa 1 consistiu de três testes retangulares até a exaustão voluntária, nas intensidades de 18%, 20% e 22% de inclinação, para determinação dos parâmetros do modelo de potência crítica por dois modelos lineares e um hiperbólico. A etapa 2 consistiu na determinação da intensidade correspondente ao máximo estado estável de lactato sanguíneo (MEEL). ANOVA demonstrou que o modelo hiperbólico (15,4 ± 1,1%) resultou em estimativa significativamente menor que os outros dois modelos lineares inclinação-tempo-1 (16,0 ± 1,0%) e hiperbólico linearizado tempo-1-inclinação (15,9 ± 1,0%), porém, houve alta correlação entre os modelos. Os dois modelos lineares superestimaram a intensidade do MEEL (14,1 ± 1,4%), e o modelo hiperbólico, mesmo sem diferença estatística, apresentou fraca correlação, com baixa concordância em relação ao MEEL. Conclui-se que a relação inclinação-tempo até a exaustão, em testes de caminhada, não permitem a estimativa de intensidade de exercício suportável por longo período de tempo.
Resumo:
The aim of this study was to access the P-t(Lim) model in swimming, applying the load control available in full tethered swim condition. Its physiological meaning for the determination of boundary of heavy/severe domains was assessed from the relationships with critical velocity (CV), critical power (CP) and maximal lactate steady state (MLSS). The velocity at MLSS (v(MLSS) = 1.17 +/- 0.11 m/s) and CV (1.19 +/- 0.12 m/s) were significantly different. Similarly, the power at MLSS (p(MFEL) = 89.2 +/- 15.1 W) and CP (99.4 +/- 22.9 W) were significantly different. There was no difference between lactate concentration at vMLSS (3.54 +/- 0.9 mM) and p(MLSS) (3.76 +/- 0.6 mM). Significant Pearson's coefficients (r > 0.70) were observed among v(MLSS) and P-MLSS with their respective values on time-limited model. Thus, the tethered-crawl condition seems to be valid to determine the boundary of heavy/severe domains, and to access the aerobic capacity of swimmers.
Resumo:
The purpose of this study was to evaluate the effect of using different mathematical models to describe the relationship between treadmill running speed and time to exhaustion. All models generated a value for an aerobic parameter (critical speed; S(critical)). 35 university students performed 5-7 constant-speed 0%-slope treadmill tests at speeds that elicited exhaustion in similar to 3 min to similar to 10 min. Speed and time data were fitted using 3 models: (1) a 2-parameter hyperbolic model; (2) a 3-parameter hyperbolic model; and (3) a hybrid 3-parameter hyperbolic + exponential model. The 2-parameter model generated values for S(critical) (mean (+/- SD): 186 +/- 33 m.min(-1)) and anaerobic distance capacity (ADC; 251 +/- 122 m) with a high level of statistical certainty (i.e., with small SEEs). The 3-parameter models generated parameter estimates that were unrealistic in magnitude and/or associated with large SEEs and little statistical certainty. Therefore, it was concluded that, for the range of exercise durations used in the present study, the 2-parameter model is preferred because it provides a parsimonious description of the relationship between velocity and time to fatigue, and it produces parameters of known physiological significance, with excellent confidence.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências da Motricidade - IBRC
Resumo:
The objective of this study was to analyze the influence of previous exercise on the determination of critical power (CP). Seven apparently healthy nontrained males, of 18 to 25 years, participated of this study. The subjects were submitted, in different days to the following protocols in a cyclergometer: 1) one progressive test until voluntary exhaustion for the determination of lactate threshold (LL), maximal oxygen uptake (VO2max) and its corresponding intensity (IVO2max); 2) six constant workload tests at 95,100 and 110% IVO2max until exhaustion with and without a previous exercise at 70% , in random order. The exhaustion times (tlim) at 95, 100 and 110% IVO2max were adjusted forme thress models of two parameters to estimate CP and anaerobic work capacity (AWC) [P=CTAn/tlim)+CP; tlim = CTAn/(P-PC); P=PC.tlim+ CTAn]. The model with the lowest standard error was considered for the estimation of CP. The tlim at 95% IVO2max was similar without (501 ± 140 s) and with previous exercise (473 ± 99 s). However, the tlim at 100% (381 ± 103 s and 334 ± 101 s) and 110% IVO2max (267 ± 163 s and 227 ± 68 s) was significantly longer with previous exercise. There was no significant difference in CP and AWCat conditions without (200 ± 27 W and 23 ± 11 kJ, respectively) and with previous exercise (212 ± 30 W and 18 ± 8 kJ, respectively). It can be concluded that the parameters of the relationship between power and time were not modified by the previous severe exercise
Resumo:
The aim of this study was to investigate whether the maximal power output (Pmax) during an incremental test was dependent on the curvature constant (W') of the power-time relationship. Thirty healthy male subjects (maximal oxygen uptake = 3.58 ± 0.40 L·min(-1)) performed a ramp incremental cycling test to determine the maximal oxygen uptake and Pmax, and 4 constant work rate tests to exhaustion to estimate 2 parameters from the modeling of the power-time relationship (i.e., critical power (CP) and W'). Afterwards, the participants were ranked according to their magnitude of W'. The median third was excluded to form a high W' group (HIGH, n = 10), and a low W' group (LOW, n = 10). Maximal oxygen uptake (3.84 ± 0.50 vs. 3.49 ± 0.37 L·min(-1)) and CP (213 ± 22 vs. 200 ± 29 W) were not significantly different between HIGH and LOW, respectively. However, Pmax was significantly greater for the HIGH (337 ± 23 W) than for the LOW (299 ± 40 W). Thus, in physically active individuals with similar aerobic parameters, W' influences the Pmax during incremental testing.
Resumo:
This dissertation analyzes the effect of market analysts’ expectations of share prices (price targets) on executive compensation. It examines how well the estimated effects of price targets on compensation fit with two competing views on determining executive compensation: the arm’s length bargaining model, which assumes that a board seeks to maximize shareholders’ interests, and the managerial power model, which assumes that a board seeks to maximize managers’ compensation (Bebchuk et al. 2005). The first chapter documents the pattern of CEO pay from fiscal year 1996 to 2010. The second chapter analyzes the Institutional Broker Estimate System Detail History Price Target data file, which that reports analysts’ price targets for firms. I show that the number of price target announcements is positively associated with company share price’s volatility, that price targets are predictive of changes in the value of stocks, and that when analysts announce positive (negative) expectations of future stock price, share prices change in the same direction in the short run. The third chapter analyzes the effect of price targets on executive compensation. I find that analysts' price targets alter the composition of executive pay between cash-based compensation and stock-based compensation. When analysts forecast a rise (fall) in the share price for a firm, the compensation package tilts toward stock-based (cash-based) compensation. The substitution effect is stronger in companies that have weaker corporate governance. The fourth chapter explores the effect of the introduction of the Sarbanes-Oxley Act (SOX) in 2002 and its reinforcement in 2006 on the options granting process. I show that the introduction of SOX and its reinforcement eliminated the practice of backdating options but increased “spring-loading” of option grants around price targets announcements. Overall, the dissertation shows that price targets provide insights into the determinants of executive pay in favor of the managerial power model.
Resumo:
Model-based calibration of steady-state engine operation is commonly performed with highly parameterized empirical models that are accurate but not very robust, particularly when predicting highly nonlinear responses such as diesel smoke emissions. To address this problem, and to boost the accuracy of more robust non-parametric methods to the same level, GT-Power was used to transform the empirical model input space into multiple input spaces that simplified the input-output relationship and improved the accuracy and robustness of smoke predictions made by three commonly used empirical modeling methods: Multivariate Regression, Neural Networks and the k-Nearest Neighbor method. The availability of multiple input spaces allowed the development of two committee techniques: a 'Simple Committee' technique that used averaged predictions from a set of 10 pre-selected input spaces chosen by the training data and the "Minimum Variance Committee" technique where the input spaces for each prediction were chosen on the basis of disagreement between the three modeling methods. This latter technique equalized the performance of the three modeling methods. The successively increasing improvements resulting from the use of a single best transformed input space (Best Combination Technique), Simple Committee Technique and Minimum Variance Committee Technique were verified with hypothesis testing. The transformed input spaces were also shown to improve outlier detection and to improve k-Nearest Neighbor performance when predicting dynamic emissions with steady-state training data. An unexpected finding was that the benefits of input space transformation were unaffected by changes in the hardware or the calibration of the underlying GT-Power model.
Resumo:
The need to refine models for best-estimate calculations, based on good-quality experimental data, has been expressed in many recent meetings in the field of nuclear applications. The modeling needs arising in this respect should not be limited to the currently available macroscopic methods but should be extended to next-generation analysis techniques that focus on more microscopic processes. One of the most valuable databases identified for the thermalhydraulics modeling was developed by the Nuclear Power Engineering Corporation (NUPEC), Japan. From 1987 to 1995, NUPEC performed steady-state and transient critical power and departure from nucleate boiling (DNB) test series based on the equivalent full-size mock-ups. Considering the reliability not only of the measured data, but also other relevant parameters such as the system pressure, inlet sub-cooling and rod surface temperature, these test series supplied the first substantial database for the development of truly mechanistic and consistent models for boiling transition and critical heat flux. Over the last few years the Pennsylvania State University (PSU) under the sponsorship of the U.S. Nuclear Regulatory Commission (NRC) has prepared, organized, conducted and summarized the OECD/NRC Full-size Fine-mesh Bundle Tests (BFBT) Benchmark. The international benchmark activities have been conducted in cooperation with the Nuclear Energy Agency/Organization for Economic Co-operation and Development (NEA/OECD) and Japan Nuclear Energy Safety (JNES) organization, Japan. Consequently, the JNES has made available the Boiling Water Reactor (BWR) NUPEC database for the purposes of the benchmark. Based on the success of the OECD/NRC BFBT benchmark the JNES has decided to release also the data based on the NUPEC Pressurized Water Reactor (PWR) subchannel and bundle tests for another follow-up international benchmark entitled OECD/NRC PWR Subchannel and Bundle Tests (PSBT) benchmark. This paper presents an application of the joint Penn State University/Technical University of Madrid (UPM) version of the well-known subchannel code COBRA-TF, namely CTF, to the critical power and departure from nucleate boiling (DNB) exercises of the OECD/NRC BFBT and PSBT benchmarks