42 resultados para CrispR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

CRISPR/Cas9-mediated targeted mutagenesis allows efficient generation of loss-of-function alleles in zebrafish. To date, this technology has been primarily used to generate genetic knockout animals. Nevertheless, the study of the function of certain loci might require tight spatiotemporal control of gene inactivation. Here, we show that tissue-specific gene disruption can be achieved by driving Cas9 expression with the Gal4/UAS system. Furthermore, by combining the Gal4/UAS and Cre/loxP systems, we establish a versatile tool to genetically label mutant cell clones, enabling their phenotypic analysis. Our technique has the potential to be applied to diverse model organisms, enabling tissue-specific loss-of-function and phenotypic characterization of live and fixed tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Klebsiella pneumoniae U25 is a multidrug resistant strain isolated from a tertiary care hospital in Chennai, India. Here, we report the complete annotated genome sequence of strain U25 obtained using PacBio RSII. This is the first report of the whole genome of K. pneumoniae species from Chennai. It consists of a single circular chromosome of size 5,491,870-bp and two plasmids of size 211,813 and 172,619-bp. The genes associated with multidrug resistance were identified. The chromosome of U25 was found to have eight antibiotic resistant genes [blaOXA-1, blaSHV-28, aac(6’)1b-cr, catB3, oqxAB, dfrA1]. The plasmid pMGRU25-001 was found to have only one resistant gene (catA1) while plasmid pMGRU25-002 had 20 resistant genes [strAB, aadA1, aac(6’)-Ib, aac(3)-IId, sul1,2, blaTEM-1A,1B, blaOXA-9, blaCTX-M-15, blaSHV-11, cmlA1, erm(B), mph(A)]. A mutation in the porin OmpK36 was identified which is likely to be associated with the intermediate resistance to carbapenems in the absence of carbapenemase genes. U25 is one of the few K. pneumoniae strains to harbour clustered regularly interspaced short palindromic repeats (CRISPR) systems. Two CRISPR arrays corresponding to Cas3 family helicase were identified in the genome. When compared to K. pneumoniae NTUHK2044, a transposase gene InsH of IS5-13 was found inserted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La protéine hétérotrimérique laminine-111 permet le lien entre la matrice-extracellulaire et l’intégrine α7β1 du sarcolemme, remplaçant ainsi dans les muscles dystrophiques, des liens normalement assurés par le complexe de la dystrophine. L’injection de laminine-111 dans des souris mdx a permis, entre autre, l’augmentation de l’expression de l’intégrine α7β1, d’empêcher les bris du sarcolemme lors de la contraction musculaire, de restaurer un niveau normal de la créatine kinase sérique, ainsi que d’augmenter la résistance et la force dans les muscles déficients en dystrophine. Ces résultats suggèrent que l’augmentation de la laminine-111 est un potentiel traitement pour la DMD. Les chaines β1 et γ1 de la laminine sont déjà exprimées dans le muscle humain adulte, mais la chaine α1 de la laminine (Lamα1) est exprimée uniquement pendant le stade très précoce 16 cellules de l’embryogenèse. Nous avons donc développé une méthode alternative à l’injection répétée de Laminine-111 en induisant l’expression endogène du gène LAMA1, afin de reformer le complexe trimérique α1β1γ1, la laminine 111. Ceci a été réalisé avec une technologie récente, le système CRISPR/Cas9, dont la Cas9 a été désactivée (dCas9) puis couplée à un domaine d’activation de la transcription, le VP160 (dCas9-VP160). L’utilisation d’un ou plusieurs ARN guides (ARNg) a permis de cibler le promoteur du gène LAMA1. L’ARNm de Lamα1 (qRT-PCR) ainsi que la protéine (immunohistochimie et immunobuvardage) n’ont pas été détecté dans le contrôle négatif, des myoblastes murins (C2C12). Cependant, une expression significative a été observée dans ces myoblastes transfectés avec des plasmides codant pour dCas9-VP160 et un ARNg. L’analyse protéique in vivo, dans des muscles de souris électroporés avec le même plasmide, a démontré une forte augmentation de la chaine α1 de la laminine. Des augmentations plus importantes de l’ARNm de Lamα1 ont été observées en utilisant 2 ARNg, suggérant un effet synergique. L’augmentation de l’expression de Lamα1 par le système de CRISPR/Cas9 devrait être étudiée d’avantage afin de vérifier si cette stratégie pourrait s’avérer efficace dans des cas de myopathies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il locus CYYR1 identificato e clonato sul cromosoma 21 umano è stato caratterizzato dal punto di vista molecolare come un sistema multitrascritto, esclusivo dei vertebrati che ad oggi è orfano di una funzione specifica. Dati presenti in lettura e rintracciati mostrano una possibile relazione tra il gene CYYR1 e il pathway di Sonic Hedgehog (SHH). In questo progetto di tesi è stato utilizzato il modello animale Danio rerio per indagare il ruolo funzionale dell’ortologo (cyyr1), attraverso esperimenti di gain e loss of function che hanno permesso di dimostrare un suo coinvolgimento nello sviluppo del sistema nervoso centrale, del cuore e del tessuto muscolare. Lo studio dell’ortologo in zebrafish è stato associato all’utilizzo di linee cellulari di rabdomiosarcoma umano. I risultati ottenuti dall’induzione al differenziamento miogenico di queste linee, insieme ai dati ottenuti in Danio rerio, confermano il possibile coinvolgimento del gene CYYR1 nella miogenesi. Lo studio delle relazione tra il pathway di SHH e l’espressione del gene CYYR1 è stato condotto in entrambi i modelli con l’utilizzo di differenti inibitori della via di segnalazione. I risultati ottenuti mostrano che sistemi inibitori agenti direttamente sul recettore SMO riducono l’espressione del gene. Un dato inaspettato in Danio rerio ottenuto durante questi esperimenti di inibizione, ha aperto una nuova linea di ricerca in collaborazione con l’Università di Warwick tesa a verificare la relazione tra il gene cyyr1 e il gene lefty1. Gli esperimenti condotti presso il laboratorio della Prof.ssa Sampath hanno dimostrato la localizzazione del prodotto proteico cyyr1 in Danio rerio e indagato co-localizzazioni con la proteina lefty1. Infine, in collaborazione con Dr. Deflorian e della Prof.ssa Pistocchi, è stato generato un mutante di Danio rerio deleto per il gene cyyr1 con la tecnica CRISPR/Cas9. La caratterizzazione del mutante cyyr1 -/- ha confermato alcuni dei dati ottenuti attraverso esperimenti di loss of function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite extensive research and introduction of innovative therapy, lung cancer prognosis remains poor, with a five years survival of only 17%. The success of pharmacological treatment is often impaired by drug resistance. Thus, the characterization of response mechanisms to anti-cancer compounds and of the molecular mechanisms supporting lung cancer aggressiveness are crucial for patient’s management. In the first part of this thesis, we characterized the molecular mechanism behind resistance of lung cancer cells to the Inhibitors of the Bromodomain and Extraterminal domain containing Proteins (BETi). Through a CRISPR/Cas9 screening we identified three Hippo Pathway members, LATS2, TAOK1 and NF2 as genes implicated in susceptibility to BETi. These genes confer sensitivity to BETi inhibiting TAZ activity. Conversely, TAZ overexpression increases resistance to BETi. We also displayed that BETi downregulate both YAP, TAZ and TEADs expression in several cancer cell lines, implying a novel BETi-dependent cytotoxic mechanism. In the second part of this work, we attempted to characterize the crosstalk between the TAZ gene and its cognate antisense long-non coding RNA (lncRNA) TAZ-AS202 in lung tumorigenesis. As for TAZ downregulation, TAZ-AS202 silencing impairs NSCLC cells proliferation, migration and invasion, suggesting a pro-tumorigenic function for this lncRNA during lung tumorigenesis. TAZ-AS202 regulates TAZ target genes without altering TAZ expression or localization. This finding implies an uncovered functional cooperation between TAZ and TAZ-AS202. Moreover, we found that the EPH-ephrin signaling receptor EPHB2 is a downstream effector affected by both TAZ and TAZ-AS202 silencing. EPHB2 downregulation significantly attenuates cells proliferation, migration and invasion, suggesting that, at least in part, TAZ-AS202 and TAZ pro-oncogenic activity depends on EPH-ephrin signaling final deregulation. Finally, we started to dissect the mechanism underlying the TAZ-AS202 regulatory activity on EPHB2 in lung cancer, which may involve the existence of an intermediate transcription factor and is the object of our ongoing research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary CoQ10 deficiency diseases encompass a heterogeneous spectrum of clinical phenotypes. Among these, defect or mutation on COQ2 gene, encoding a para-hydroxybenzoate polyprenyl transferase, have been associated with different diseases. Understanding the functional and metabolic impact of COQ2 mutation and the consequent CoQ10 deficiency is still a matter of debate. To date the aetiology of the neurological phenotypes correlated to CoQ10 deficiency does not present a clear genotype-phenotype association. In addition to the metabolic alterations due to Coenzyme Q depletion, the impairment of mitochondrial function, associated with the reduced CoQ level, could play a significant role in the metabolic flexibility of cancer. This study aimed to characterize the effect of varying degrees of CoQ10 deficiency and investigate the multifaceted aspect of CoQ10 depletion and its impact on cell metabolism. To induced CoQ10 depletion, different cell models were used, employing a chemical and genome editing approach. In T67 and MCF-7 CoQ10 depletion was achieved by a competitive inhibitor of the enzyme, 4-nitrobenzoate (4-NB), whereas in SH-SY5Y the COQ2 gene was edited via CRISPR-Cas9 cutting edge technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is the most common neurodegenerative disease in elderly. Donepezil is the first-line drug used for AD. In section one, the experimental activity was oriented to evaluate and characterize molecular and cellular mechanisms that contribute to neurodegeneration induced by the Aβ1-42 oligomers (Aβ1-42O) and potential neuroprotective effects of the hybrids feruloyl-donepezil compound called PQM130. The effects of PQM130 were compared to donepezil in a murine AD model, obtained by intracerebroventricular (i.c.v.) injection of Aβ1-42O. The intraperitoneal administration of PQM130 (0.5-1 mg/kg) after i.c.v. Aβ1-42O injection improved learning and memory, protecting mice against spatial cognition decline. Moreover, it reduced oxidative stress, neuroinflammation and neuronal apoptosis, induced cell survival and protein synthesis in mice hippocampus. PQM130 modulated different pathways than donepezil, and it is more effective in counteracting Aβ1-42O damage. The section two of the experimental activity was focused on studying a loss of function variants of ABCA7. GWA studies identified mutations in the ABCA7 gene as a risk factor for AD. The mechanism through which ABCA7 contributes to AD is not clear. ABCA7 regulates lipid metabolism and critically controls phagocytic function. To investigate ABCA7 functions, CRISPR/Cas9 technology was used to engineer human iPSCs and to carry the genetic variant Y622*, which results in a premature stop codon, causing ABCA7 loss-of-function. From iPSCs, astrocytes were generated. This study revealed the effects of ABCA7 loss in astrocytes. ABCA7 Y622* mutation induced dysfunctional endocytic trafficking, impairing Aβ clearance, lipid dysregulation and cell homeostasis disruption, alterations that could contribute to AD. Though further studies are needed to confirm the PQM130 neuroprotective role and ABCA7 function in AD, the provided results showed a better understanding of AD pathophysiology, a new therapeutic approach to treat AD, and illustrated an innovative methodology for studying the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two-metal-ion architecture is a structural feature found in a variety of RNA processing metalloenzymes or ribozymes (RNA-based enzymes), which control the biogenesis and the metabolism of vital RNAs, including non-coding RNAs (ncRNAs). Notably, such ncRNAs are emerging as key players for the regulation of cellular homeostasis, and their altered expression has been often linked to the development of severe human pathologies, from cancer to mental disorders. Accordingly, understanding the biological processing of ncRNAs is foundational for the development of novel therapeutic strategies and tools. Here, we use state-of the-art molecular simulations, complemented with X-ray crystallography and biochemical experiments, to characterize the RNA processing cycle as catalyzed by two two-metal-ion enzymes: the group II intron ribozymes and the RNase H1. We show that multiple and diverse cations are strategically recruited at and timely released from the enzymes’ active site during catalysis. Such a controlled cations’ trafficking leads to the recursive formation and disruption of an extended two-metal ion architecture that is functional for RNA-hydrolysis – from substrate recruitment to product release. Importantly, we found that these cations’ binding sites are conserved among other RNA-processing machineries, including the human spliceosome and CRISPR-Cas systems, suggesting that an evolutionarily-converged catalytic strategy is adopted by these enzymes to process RNA molecules. Thus, our findings corroborate and sensibly extend the current knowledge of two-metal-ion enzymes, and support the design of novel drugs targeting RNA-processing metalloenzymes or ribozymes as well as the rational engineering of novel programmable gene-therapy tools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malignant Pleural Mesothelioma (MPM) is a very aggressive cancer whose incidence is growing worldwide. MPM escapes the classical models of carcinogenesis and lacks a distinctive genetic fingerprint, keeping obscure the molecular events that lead to tumorigenesis. This severely impacts on the limited therapeutic options and on the lack of specific biomarkers, concurring to make MPM one of the deadliest cancers. Here we combined a functional genome-wide loss of function CRISPR/Cas9 screening with patients’ transcriptomic and clinical data, to identify genes essential for MPM progression. Besides, we explored the role of non-coding RNAs to MPM progression by analysing gene expression profiles and clinical data from the MESO-TCGA dataset. We identified TRIM28 and the lncRNA LINC00941 as new vulnerabilities of MPM, associated with disease aggressiveness and bad outcome of patients. TRIM28 is a multi-domain protein involved in many processes, including transcription regulation. We showed that TRIM28 silencing impairs MPM cells’ growth and clonogenicity by blocking cells in mitosis. RNA-seq profiling showed that TRIM28 loss abolished the expression of major mitotic players. Our data suggest that TRIM28 is part of the B-MYB/FOXM1-MuvB complex that specifically drives the activation of mitotic genes, keeping the time of mitosis. In parallel, we found LINC00941 as strongly associated with reduced survival probability in MPM patients. LINC00941 KD profoundly reduced MPM cells’ growth, migration and invasion. This is accompanied by changes in morphology, cytoskeleton organization and cell-cell adhesion properties. RNA-seq profiling showed that LINC00941 KD impacts crucial functions of MPM, including HIF1α signalling. Collectively these data provided new insights into MPM biology and demonstrated that the integration of functional screening with patients’ clinical data is a powerful tool to highlight new non-genetic cancer dependencies that associate to a bad outcome in vivo, paving the way to new MPM-oriented targeted strategies and prognostic tools to improve patients risk-based stratification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Growing evidence indicates that cell and nuclear deformability plays a crucial role in the determination of cancer cells tumorigenic and metastatic potential. The perinuclear actin cap, by wrapping the nucleus with a functional network of actomyosin cables, can modulate nuclear architecture and consequently cell/nuclear elasticity. The hepatocyte growth factor receptor (MET) stands out among other membrane receptors as crucial player of the actin filaments organization, but no data are available on a specific role for MET in the actin cap assembly and the overall nuclear architecture organization. In a cell system characterized by MET hyperactivation, we observed a strong rearrangement of the cellular actin caps, with a complete dismantling of apical stress fibers and a strikingly enhanced nuclear height. CRISPR/Cas9 silencing of MET completely reverted the aberrant phenotype, resulting in flattened cells with perfectly aligned perinuclear actomyosin bundles, as well as decreased MAPK and PI3K/AKT signaling, cell proliferation rate and aggressiveness. Interestingly, MET ablated cells acquired a remarkably directed and polarized migratory phenotype, contrarily to cells with MET sustained activation showing meandering random walk. A pathway enrichment analysis comparing MET-activated and MET-KO cells RNAseq data, unveiled the contribution of multiple pathways associated with cytoskeleton remodeling, regulation of cell shape and response to mechanical stimuli. In line, the co-transcriptional activator YAP1, playing a major role in cell mechanosensing and focal adhesions/actin stabilization, appeared the culprit of the genetic reassembling of KO cells. Indeed, MET silencing was shown to induce YAP1 nuclear shuttling and increased co-transcriptional activity. Finally, we were able to induce in a normal epithelial model a phenotype closer to MET activated cancer cells only by introducing a constitutive fusion protein of MET. Taken together, our results demonstrate a new mechanism of MET-mediated actin remodeling responsible for a tumor-initiating capacity and meandering random migration, which requires YAP1 inactivation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The arginine methyltransferase CARM1 (PRMT4) is amplified and overexpressed in ~20% of high-grade serous ovarian cancer (HGSOC) and correlates with a poor survival. Therapeutic approaches based on CARM1 expression remain to be an unmet need. Here we show that fatty acid metabolism represents a metabolic vulnerability for HGSOC in a CARM1 expression status dependent manner. CARM1 promotes the de novo synthesis of fatty acids and monounsaturated fatty acids (MUFAs). The disruption of MUFAs synthesis by inhibition of SCD1 results in excessive accumulation of cytotoxic saturated fatty acids and it is synthetic lethal with CARM1 expression. Collectively, our data show that the pharmacological inhibition of MUFAs synthesis via SCD1 inhibition represents a therapeutic strategy for CARM1-high HGSOC. Another arginine methyltransferase, PRMT5, has been identified by our CRISPR screening analysis as a promising candidate for invasive ARID1A-deficient endometrial cancer. Endometrial Cancer frequently harbor somatic inactivating mutation of ARID1A that can promote an invasive phenotype. Our in vitro approach validated the CRISPR screening showing that both PRTM5 knock down and its pharmaceutical inhibition specifically hamper the invasion of ARID1A inactivated cells. Mechanistically, PRMT5 directly regulates the epithelia to mesenchymal transition pathway genes interacting with the SWI/SNF complexes. Moreover, in vivo experiments showed that PRMT5 inhibition contrasted the myometrium invasion highlighting PRMT5 inhibition as promising therapeutic strategy for ARID1A- inactivated aggressive endometrial cancer.