943 resultados para Crash Predictions
Resumo:
A combined specular reflection and diffusion model using the radiosity technique was developed to calculate road traffic noise level on residential balconies. The model is capable of numerous geometrical configurations for a single balcony situated in the centre of a street canyon. The geometry of the balcony and the street can be altered with width,length and height. The model was used to calculate for three different geometrical and acoustic absorption characteristics for a balcony. The calculated results are presented in this paper.
Resumo:
Background Heavy vehicle transportation continues to grow internationally; yet crash rates are high, and the risk of injury and death extends to all road users. The work environment for the heavy vehicle driver poses many challenges; conditions such as scheduling and payment are proposed risk factors for crash, yet the precise measure of these needs quantifying. Other risk factors such as sleep disorders including obstructive sleep apnoea have been shown to increase crash risk in motor vehicle drivers however the risk of heavy vehicle crash from this and related health conditions needs detailed investigation. Methods and Design The proposed case control study will recruit 1034 long distance heavy vehicle drivers: 517 who have crashed and 517 who have not. All participants will be interviewed at length, regarding their driving and crash history, typical workloads, scheduling and payment, trip history over several days, sleep patterns, health, and substance use. All participants will have administered a nasal flow monitor for the detection of obstructive sleep apnoea. Discussion Significant attention has been paid to the enforcement of legislation aiming to deter problems such as excess loading, speeding and substance use; however, there is inconclusive evidence as to the direction and strength of associations of many other postulated risk factors for heavy vehicle crashes. The influence of factors such as remuneration and scheduling on crash risk is unclear; so too the association between sleep apnoea and the risk of heavy vehicle driver crash. Contributory factors such as sleep quality and quantity, body mass and health status will be investigated. Quantifying the measure of effect of these factors on the heavy vehicle driver will inform policy development that aims toward safer driving practices and reduction in heavy vehicle crash; protecting the lives of many on the road network.
Resumo:
Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend prelim- inary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.
Resumo:
In recent years, ocean scientists have started to employ many new forms of technology as integral pieces in oceanographic data collection for the study and prediction of complex and dynamic ocean phenomena. One area of technological advancement in ocean sampling if the use of Autonomous Underwater Vehicles (AUVs) as mobile sensor plat- forms. Currently, most AUV deployments execute a lawnmower- type pattern or repeated transects for surveys and sampling missions. An advantage of these missions is that the regularity of the trajectory design generally makes it easier to extract the exact path of the vehicle via post-processing. However, if the deployment region for the pattern is poorly selected, the AUV can entirely miss collecting data during an event of specific interest. Here, we consider an innovative technology toolchain to assist in determining the deployment location and executed paths for AUVs to maximize scientific information gain about dynamically evolving ocean phenomena. In particular, we provide an assessment of computed paths based on ocean model predictions designed to put AUVs in the right place at the right time to gather data related to the understanding of algal and phytoplankton blooms.
Resumo:
Trajectory design for Autonomous Underwater Vehicles (AUVs) is of great importance to the oceanographic research community. Intelligent planning is required to maneuver a vehicle to high-valued locations for data collection. We consider the use of ocean model predictions to determine the locations to be visited by an AUV, which then provides near-real time, in situ measurements back to the model to increase the skill of future predictions. The motion planning problem of steering the vehicle between the computed waypoints is not considered here. Our focus is on the algorithm to determine relevant points of interest for a chosen oceanographic feature. This represents a first approach to an end to end autonomous prediction and tasking system for aquatic, mobile sensor networks. We design a sampling plan and present experimental results with AUV retasking in the Southern California Bight (SCB) off the coast of Los Angeles.
Resumo:
-
Resumo:
Skid resistance is a condition parameter characterising the contribution that a road makes to the friction between a road surface and a vehicle tyre. Studies of traffic crash histories around the world have consistently found that a disproportionate number of crashes occur where the road surface has a low level of surface friction and/or surface texture, particularly when the road surface is wet. Various research results have been published over many years and have tried to quantify the influence of skid resistance on accident occurrence and to characterise a correlation between skid resistance and accident frequency. Most of the research studies used simple statistical correlation methods in analysing skid resistance and crash data.----- ------ Preliminary findings of a systematic and extensive literature search conclude that there is rarely a single causation factor in a crash. Findings from research projects do affirm various levels of correlation between skid resistance and accident occurrence. Studies indicate that the level of skid resistance at critical places such as intersections, curves, roundabouts, ramps and approaches to pedestrian crossings needs to be well maintained.----- ----- Management of risk is an integral aspect of the Queensland Department of Main Roads (QDMR) strategy for managing its infrastructure assets. The risk-based approach has been used in many areas of infrastructure engineering. However, very limited information is reported on using risk-based approach to mitigate crash rates related to road surface. Low skid resistance and surface texture may increase the risk of traffic crashes.----- ----- The objectives of this paper are to explore current issues of skid resistance in relation to crashes, to provide a framework of probability-based approach to be adopted by QDMR in assessing the relationship between crash accidents and pavement properties, and to explain why the probability-based approach is a suitable tool for QDMR in order to reduce accident rates due to skid resistance.
Resumo:
Illegal street racing has received increased attention in recent years from road safety professionals and the media as jurisdictions in Australia, Canada, and the United States have implemented laws to address the problem, which primarily involves young male drivers. Although some evidence suggests that the prevalence of illegal street racing is increasing, obtaining accurate estimates of the crash risk of this behavior is difficult because of limitations in official data sources. Although crash risk can be explored by examining the proportion of incidents of street racing that result in crashes, or the proportion of all crashes that involve street racing, this paper reports on the findings of a study that explored the riskiness of involved drivers. The driving histories of 183 male drivers with an illegal street racing conviction in Queensland, Australia, were compared with a random sample of 183 male Queensland drivers with the same age distribution. The offender group was found to have significantly more traffic infringements, license sanctions, and crashes than the comparison group. Drivers in the offender group were more likely than the comparison group to have committed infringements related to street racing, such as speeding, "hooning," and offenses related to vehicle defects or illegal modifications. Insufficient statistical capacity prevented full exploration of group differences in the type and nature of earlier crashes. It was concluded, however, that street racing offenders generally can be considered risky drivers who warrant attention and whose risky behavior cannot be explained by their youth alone.
Resumo:
Developing safe and sustainable road systems is a common goal in all countries. Applications to assist with road asset management and crash minimization are sought universally. This paper presents a data mining methodology using decision trees for modeling the crash proneness of road segments using available road and crash attributes. The models quantify the concept of crash proneness and demonstrate that road segments with only a few crashes have more in common with non-crash roads than roads with higher crash counts. This paper also examines ways of dealing with highly unbalanced data sets encountered in the study.
Resumo:
Road crashes cost world and Australian society a significant proportion of GDP, affecting productivity and causing significant suffering for communities and individuals. This paper presents a case study that generates data mining models that contribute to understanding of road crashes by allowing examination of the role of skid resistance (F60) and other road attributes in road crashes. Predictive data mining algorithms, primarily regression trees, were used to produce road segment crash count models from the road and traffic attributes of crash scenarios. The rules derived from the regression trees provide evidence of the significance of road attributes in contributing to crash, with a focus on the evaluation of skid resistance.
Resumo:
This paper presents a preliminary crash avoidance framework for heavy equipment control systems. Safe equipment operation is a major concern on construction sites since fatal on-site injuries are an industry-wide problem. The proposed framework has potential for effecting active safety for equipment operation. The framework contains algorithms for spatial modeling, object tracking, and path planning. Beyond generating spatial models in fractions of seconds, these algorithms can successfully track objects in an environment and produce a collision-free 3D motion trajectory for equipment.
Resumo:
Traffic oscillations are typical features of congested traffic flow that are characterized by recurring decelerations followed by accelerations (stop-and-go driving). The negative environmental impacts of these oscillations are widely accepted, but their impact on traffic safety has been debated. This paper describes the impact of freeway traffic oscillations on traffic safety. This study employs a matched case-control design using high-resolution traffic and crash data from a freeway segment. Traffic conditions prior to each crash were taken as cases, while traffic conditions during the same periods on days without crashes were taken as controls. These were also matched by presence of congestion, geometry and weather. A total of 82 cases and about 80,000 candidate controls were extracted from more than three years of data from 2004 to 2007. Conditional logistic regression models were developed based on the case-control samples. To verify consistency in the results, 20 different sets of controls were randomly extracted from the candidate pool for varying control-case ratios. The results reveal that the standard deviation of speed (thus, oscillations) is a significant variable, with an average odds ratio of about 1.08. This implies that the likelihood of a (rear-end) crash increases by about 8% with an additional unit increase in the standard deviation of speed. The average traffic states prior to crashes were less significant than the speed variations in congestion.
Resumo:
Abstract As regional and continental carbon balances of terrestrial ecosystems become available, it becomes clear that the soils are the largest source of uncertainty. Repeated inventories of soil organic carbon (SOC) organized in soil monitoring networks (SMN) are being implemented in a number of countries. This paper reviews the concepts and design of SMNs in ten countries, and discusses the contribution of such networks to reducing the uncertainty of soil carbon balances. Some SMNs are designed to estimate country-specific land use or management effects on SOC stocks, while others collect soil carbon and ancillary data to provide a nationally consistent assessment of soil carbon condition across the major land-use/soil type combinations. The former use a single sampling campaign of paired sites, while for the latter both systematic (usually grid based) and stratified repeated sampling campaigns (5–10 years interval) are used with densities of one site per 10–1,040 km². For paired sites, multiple samples at each site are taken in order to allow statistical analysis, while for the single sites, composite samples are taken. In both cases, fixed depth increments together with samples for bulk density and stone content are recommended. Samples should be archived to allow for re-measurement purposes using updated techniques. Information on land management, and where possible, land use history should be systematically recorded for each site. A case study of the agricultural frontier in Brazil is presented in which land use effect factors are calculated in order to quantify the CO2 fluxes from national land use/management conversion matrices. Process-based SOC models can be run for the individual points of the SMN, provided detailed land management records are available. These studies are still rare, as most SMNs have been implemented recently or are in progress. Examples from the USA and Belgium show that uncertainties in SOC change range from 1.6–6.5 Mg C ha−1 for the prediction of SOC stock changes on individual sites to 11.72 Mg C ha−1 or 34% of the median SOC change for soil/land use/climate units. For national SOC monitoring, stratified sampling sites appears to be the most straightforward attribution of SOC values to units with similar soil/land use/climate conditions (i.e. a spatially implicit upscaling approach). Keywords Soil monitoring networks - Soil organic carbon - Modeling - Sampling design
Resumo:
In an Australian context, the term hooning refers to risky driving behaviours such as illegal street racing and speed trials, as well as behaviours that involve unnecessary noise and smoke, which include burn outs, donuts, fish tails, drifting and other skids. Hooning receives considerable negative media attention in Australia, and since the 1990s all Australian jurisdictions have implemented vehicle impoundment programs to deal with the problem. However, there is limited objective evidence of the road safety risk associated with hooning behaviours. Attempts to estimate the risk associated with hooning are limited by official data collection and storage practices, and the willingness of drivers to admit to their illegal behaviour in the event of a crash. International evidence suggests that illegal street racing is associated with only a small proportion of fatal crashes; however, hooning in an Australian context encompasses a broader group of driving behaviours than illegal street racing alone, and it is possible that the road safety risks will differ with these behaviours. There is evidence from North American jurisdictions that vehicle impoundment programs are effective for managing drink driving offenders, and drivers who continue to drive while disqualified or suspended both during and post-impoundment. However, these programs used impoundment periods of 30 – 180 days (depending on the number of previous offences). In Queensland the penalty for a first hooning offence is 48 hours, while the vehicle can be impounded for up to 3 months for a second offence, or permanently for a third or subsequent offence within three years. Thus, it remains unclear whether similar effects will be seen for hooning offenders in Australia, as no evaluations of vehicle impoundment programs for hooning have been published. To address these research needs, this program of research consisted of three complementary studies designed to: (1) investigate the road safety implications of hooning behaviours in terms of the risks associated with the specific behaviours, and the drivers who engage in these behaviours; and (2) assess the effectiveness of current approaches to dealing with the problem; in order to (3) inform policy and practice in the area of hooning behaviour. Study 1 involved qualitative (N = 22) and quantitative (N = 290) research with drivers who admitted engaging in hooning behaviours on Queensland roads. Study 2 involved a systematic profile of a large sample of drivers (N = 834) detected and punished for a hooning offence in Queensland, and a comparison of their driving and crash histories with a randomly sampled group of Queensland drivers with the same gender and age distribution. Study 3 examined the post-impoundment driving behaviour of hooning offenders (N = 610) to examine the effects of vehicle impoundment on driving behaviour. The theoretical framework used to guide the research incorporated expanded deterrence theory, social learning theory, and driver thrill-seeking perspectives. This framework was used to explore factors contributing to hooning behaviours, and interpret the results of the aspects of the research designed to explore the effectiveness of vehicle impoundment as a countermeasure for hooning. Variables from each of the perspectives were related to hooning measures, highlighting the complexity of the behaviour. This research found that the road safety risk of hooning behaviours appears low, as only a small proportion of the hooning offences in Study 2 resulted in a crash. However, Study 1 found that hooning-related crashes are less likely to be reported than general crashes, particularly when they do not involve an injury, and that higher frequencies of hooning behaviours are associated with hooning-related crash involvement. Further, approximately one fifth of drivers in Study 1 reported being involved in a hooning-related crash in the previous three years, which is comparable to general crash involvement among the general population of drivers in Queensland. Given that hooning-related crashes represented only a sub-set of crash involvement for this sample, this suggests that there are risks associated with hooning behaviour that are not apparent in official data sources. Further, the main evidence of risk associated with the behaviour appears to relate to the hooning driver, as Study 2 found that these drivers are likely to engage in other risky driving behaviours (particularly speeding and driving vehicles with defects or illegal modifications), and have significantly more traffic infringements, licence sanctions and crashes than drivers of a similar (i.e., young) age. Self-report data from the Study 1 samples indicated that Queensland’s vehicle impoundment and forfeiture laws are perceived as severe, and that many drivers have reduced their hooning behaviour to avoid detection. However, it appears that it is more common for drivers to have simply changed the location of their hooning behaviour to avoid detection. When the post-impoundment driving behaviour of the sample of hooning offenders was compared to their pre-impoundment behaviour to examine the effectiveness of vehicle impoundment in Study 3, it was found that there was a small but significant reduction in hooning offences, and also for other traffic infringements generally. As Study 3 was observational, it was not possible to control for extraneous variables, and is, therefore, possible that some of this reduction was due to other factors, such as a reduction in driving exposure, the effects of changes to Queensland’s Graduated Driver Licensing scheme that were implemented during the study period and affected many drivers in the offender sample due to their age, or the extension of vehicle impoundment to other types of offences in Queensland during the post-impoundment period. However, there was a protective effect observed, in that hooning offenders did not show the increase in traffic infringements in the post period that occurred within the comparison sample. This suggests that there may be some effect of vehicle impoundment on the driving behaviour of hooning offenders, and that this effect is not limited to their hooning driving behaviour. To be more confident in these results, it is necessary to measure driving exposure during the post periods to control for issues such as offenders being denied access to vehicles. While it was not the primary aim of this program of research to compare the utility of different theoretical perspectives, the findings of the research have a number of theoretical implications. For example, it was found that only some of the deterrence variables were related to hooning behaviours, and sometimes in the opposite direction to predictions. Further, social learning theory variables had stronger associations with hooning. These results suggest that a purely legal approach to understanding hooning behaviours, and designing and implementing countermeasures designed to reduce these behaviours, are unlikely to be successful. This research also had implications for policy and practice, and a number of recommendations were made throughout the thesis to improve the quality of relevant data collection practices. Some of these changes have already occurred since the expansion of the application of vehicle impoundment programs to other offences in Queensland. It was also recommended that the operational and resource costs of these laws should be compared to the road safety benefits in ongoing evaluations of effectiveness to ensure that finite traffic policing resources are allocated in a way that produces maximum road safety benefits. However, as the evidence of risk associated with the hooning driver is more compelling than that associated with hooning behaviour, it was argued that the hooning driver may represent the better target for intervention. Suggestions for future research include ongoing evaluations of the effectiveness of vehicle impoundment programs for hooning and other high-risk driving behaviours, and the exploration of additional potential targets for intervention to reduce hooning behaviour. As the body of knowledge regarding the factors contributing to hooning increases, along with the identification of potential barriers to the effectiveness of current countermeasures, recommendations for changes in policy and practice for hooning behaviours can be made.