71 resultados para Craqueamento catalitico
Resumo:
In present work, mesoporous materials of the M41S family were synthesized, which were discovered in the early 90s by researchers from Mobil Oil Corporation, thus allowing new perspectives in the field of catalysis. One of the most important members of this family is the MCM-41, which has a hexagonal array of mesopores with pore diameters ranging from 2 to 10 nm and a high surface area, enabling it to become very promising for the use as a catalyst in the refining of oil in the catalytic cracking process, since the mesopores facilitate the access of large hydrocarbon molecules, thereby increasing the production of light products, that are in high demand in the market. The addition of aluminum in the structure of MCM-41 increases the acidity of the material, making it more beneficial for application in the petrochemical industry. The mesoporous materials MCM-41 and Al-MCM-41 (ratio Si / Al = 50) were synthesized through the hydrothermal method, starting with silica gel, NaOH and distilled water. CTMABr was used as template, for structural guiding. In Al-MCM-41 the same reactants were used, with the adding of pseudoboehmite (as a source of aluminum) in the synthesis gel. The syntheses were carried out over a period of four days with a daily adjustment of pH. The optimum conditions of calcination for the removal of the organic template (CTMABr) were discovered through TG / DTG and also through analysis by XRD, FTIR and Nitrogen Adsorption. It was found that both the method of hydrothermal synthesis and calcination conditions of the studies based on TG were promising for the production of mesoporous materials with a high degree of hexagonal array. The acidic properties of the materials were determined by desorption of n-butylamine via thermogravimetry. One proved that the addition of aluminum in the structure of MCM-41 promoted an increase in the acidity of the catalyst. To check the catalytic activity of these materials, a sample of Atmospheric Residue (RAT) that is derived from atmospheric distillation of oil from the Pole of Guamaré- RN was used. This sample was previously characterized by various techniques such as Thermogravimetry, FTIR and XRF, where through thermal analysis of a comparative study between the thermal degradation of the RAT, the RAT pyrolysis + MCM-41 and RAT + Al- MCM-41. It was found that the Al-MCM-41 was most satisfactory in the promotion of a catalytic effect on the pyrolysis of the RAT, as the cracking of heavy products in the waste occurred at temperatures lower than those observed for the pyrolysis with MCM-41, and thereby also decreasing the energy of activation for the process and increasing the rates of conversion of residue into lighter products
Resumo:
The catalytic processes play a vital role in the worldwide economy, a business that handles about US$ 13 billion per year because the value of products depends on the catalytic processes, including petroleum products, chemicals, pharmaceuticals, synthetic rubbers and plastics, among others. The zeolite ZSM-5 is used as catalyst for various reactions in the area petrochemical, petroleum refining and fine chemicals, especially the reactions of cracking, isomerization, alkylation, aromatization of olefins, among others. Many researchers have studied the hydrothermal synthesis of zeolite ZSM-5 free template and they obtained satisfactory results, so this study aims to evaluate the hydrothermal synthesis and the physicochemical properties of ZSM-5 with the presence and absence of template compared with commercial ZSM-5. The methods for hydrothermal synthesis of zeolite ZSM-5 are of scientific knowledge, providing the chemical composition required for the formation of zeolitic structure in the presence and absence of template. Samples of both zeolites ZSM-5 in protonic form were obtained by heat treatment and ion exchange, according to procedures reported in the literature. The sample of commercial ZSM-5 was acquired by the company Sentex Industrial Ltda. All samples were characterized by XRD, SEM, FTIR, TG / DTG / DSC, N2 adsorption and desorption and study of acidity by thermo-desorption of probe molecule (n-butylamine), in order to understand their physicochemical properties. The efficiency of the methods applied in this work and reported in the literature has been proved by well-defined structure of ZSM-5. According as the evaluation of physicochemical properties, zeolite ZSM-5 free template becomes promising for application in the refining processes or use as catalytic support, since its synthesis reduces environmental impacts and production costs
Resumo:
The nanostructured molecular sieve SBA-15 was synthesized by the hydrothermal method, and modified with lanthanum with Si/La molar ratios of 25, 50, 75 and 100. The materials were evaluated as catalysts for the cracking of n-hexane model reaction. Type SBA- 15 and LaSBA-15 mesoporous materials were synthesized using tetraetilortosilicato as a source of silica, hydrochloric acid, heptahydrate lanthanum chloride and distilled water. Pluronic P123 triblock. polymer was used as structure template. The syntheses were carried out by 72 hours. The obtained SBA-15 samples were previously analyzed by thermogravimetry, in order to check the conditions of calcination for removal of organic template. Then, the calcined materials were characterized by X-ray diffraction, infrared spectroscopy, adsorption and desorption of nitrogen, scanning electron microscopy and X-ray microanalysis by dispersive energy. The acidity of the samples was determined using adsorption of n-bulinamina and desorption followed by thermogravimetry. It was found that the hydrothermal synthesis method was suitable for the synthesis of the SBA-15 mesoporous materials, with an excellent degree of hexagonal ordering. The reactions of catalytic cracking of n-hexane were carried out using a fixed bed continuous flow microreactor, coupled on-line to a gas chromatograph. From the catalytic evaluation, it was observed that the mesoporous materials containing lanthanum showed different results for the reaction of cracking of nhexane compared to the unmodified mesoporous material SBA-15. As a result of cracking was obtained as main products hydrocarbons in the range of C1 to C5. The catalyst that showed better properties in relation to the acidity and catalytic activity was LaSBA-15 with the ratio Si/La = 50
Resumo:
The mesoporous nanostructured materials have been studied for application in the oil industry, in particular Al-MCM-41, due to the surface area around 800 to 1.000 m2 g-1 and, pore diameters ranging from 2 to 10 nm, suitable for catalysis to large molecules such as heavy oil. The MCM-41 has been synthesized by hydrothermal method, on which aluminum was added, in the ratio Si/Al equal to 50, to increase the generation of active acid sites in the nanotubes. The catalyst was characterized by X-ray diffraction (XRD), surface area by the BET method and, the average pore volume BJH method using the N2 adsorption, absorption spectroscopy in the infrared Fourier Transform (FT-IR) and determination of surface acidity with application of a probe molecule - n-butylamine. The catalyst showed well-defined structural properties and consistent with the literature. The overall objective was to test the Al-MCM-41 as catalyst and thermogravimetric perform tests, using two samples of heavy oil with API º equal to 14.0 and 18.5. Assays were performed using a temperature range of 30-900 ° C and heating ratios (β) ranging from 5, 10 and 20 °C min-1.The aim was to verify the thermogravimetric profiles of these oils when subjected to the action of the catalyst Al- MCM-41. Therefore, the percentage ranged catalyst applied 1, 3, 5, 10 and 20 wt%, and from the TG data were applied two different kinetic models: Ozawa-Flynn-Wall (OFW) and Kissinger-Akahrira-Sunose (KAS).The apparent activation energies found for both models had similar values and were lower for the second event of mass loss known as cracking zone, indicating a more effective performance of Al-MCM-41 in that area. Furthermore, there was a more pronounced reduction in the value of activation energy for between 10 and 20% by weight of the oil-catalyst mixture. It was concluded that the Al-MCM-41 catalyst has applicability in heavy oils to reduce the apparent activation energy of a catalyst-oil system, and the best result with 20% by weight of Al-MCM-41
Resumo:
In this work were synthesized and characterized the materials mesoporous SBA-15 and Al- SBA-15, Si / Al = 25, 50 and 75, discovered by researchers at the University of California- Santa Barbara, USA, with pore diameters ranging from 2 to 30 nm and wall thickness from 3.1 to 6.4 nm, making these promising materials in the field of catalysis, particularly for petroleum refining (catalytic cracking), as their mesopores facilitate access of the molecules constituting the oil to active sites, thereby increasing the production of hydrocarbons in the range of light and medium. To verify that the materials used as catalysts were successfully synthesized, they were characterized using techniques of X-ray diffraction (XRD), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). Aiming to check the catalytic activity thereof, a sample of atmospheric residue oil (ATR) from the pole Guamaré-RN was performed the process by means of thermogravimetry and thermal degradation of catalytic residue. Upon the curves, it was observed a reduction in the onset temperature of the decomposition process of catalytic ATR. For the kinetic model proposed by Flynn-Wall yielded some parameters to determine the apparent activation energy of decomposition, being shown the efficiency of mesoporous materials, since there was a decrease in the activation energy for the reactions using catalysts. The ATR was also subjected to pyrolysis process using a pyrolyzer with gas chromatography coupled to a mass spectrometer. Through the chromatograms obtained, there was an increase in the yield of the compounds in the range of gasoline and diesel from the catalytic pyrolysis, with emphasis on Al-SBA-15 (Si / Al = 25), which showed a percentage higher than the other catalysts. These results are due to the fact that the synthesized materials exhibit specific properties for application in the process of pyrolysis of complex molecules and high molecular weight as constituents of the ATR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Nel presente lavoro di tesi sono state messe a confronto le ATP sintasi wild-type e γM23-K in cromatofori del batterio fotosintetico Rhodobacter capsulatus sotto gli aspetti funzionale e regolatorio. Si pensava inizialmente che la mutazione, in base a studi riportati in letteratura condotti sull’omologa mutazione in E. coli, avrebbe indotto disaccoppiamento intrinseco nell’enzima. Il presente lavoro ha chiarito che il principale effetto della mutazione è un significativo aumento dell’affinità dell’enzima per l’ADP inibitorio, che ne determina il ridotto livello di ATP idrolisi e la rapidissima reinattivazione in seguito ad attivazione da forza protonmotiva. Il residuo 23 della subunità γ si trova posizionato in prossimità della regione conservata DEELSED carica negativamente della subunità β, e l’introduzione nel mutante di una ulteriore carica positiva potrebbe determinare una maggiore richiesta di energia per indurre l’apertura del sito catalitico. Un’analisi quantitativa dei dati di proton pumping condotta mediante inibizione parziale dell’idrolisi del wildtype ha inoltre mostrato come il grado di accoppiamento del mutante in condizioni standard non differisca sostanzialmente da quello del wild-type. D’altro canto, è stato recentemente osservato come un disaccoppiamento intrinseco possa venire osservato in condizioni opportune anche nel wild-type, e cioè a basse concentrazioni di ADP e Pi. Nel presente lavoro di tesi si è dimostrato come nel mutante l’osservazione del fenomeno del disaccoppiamento intrinseco sia facilitata rispetto al wild-type. È stato proprio nell’ambito delle misure condotte sul mutante che è stato possibile dimostrare per la prima volta il ruolo fondamentale della componente elettrica della forza protonmotiva nel mantenere lo stato enzimatico ad elevato accoppiamento. Tale ruolo è stato successivamente messo in luce anche nel wild-type, in parte anche grazie all’uso di inibitori specifici di F1 e di FO. Il disaccoppiamento intrinseco nel wild-type è stato ulteriormente esaminato anche nella sua dipendenza dalla rimozione di ADP e Pi; in particolare, oltre all’amina fluorescente ACMA, è stata utilizzata come sonda di ΔpH anche la 9-aminoacridina e come sonda di Δψ l’Oxonolo VI. In entrambi i casi il ruolo accoppiante di questi due ligandi è stato confermato, inoltre utilizzando la 9-aminoacridina è stato possibile calibrare il segnale di fluorescenza con salti acido-base, dando quindi una base quantitativa ai dati ottenuti. Noi riteniamo che il più probabile candidato strutturale coinvolto in questi cambiamenti di stato enzimatici sia la subunità ε, di cui è noto il coinvolgimento in processi di regolazione e in cambiamenti strutturali indotti da nucleotidi e dalla forza protonmotiva. In collaborazione con il Dipartimento di Chimica Fisica dell’Università di Friburgo è in atto un progetto per studiare i cambiamenti strutturali presumibilmente associati al disaccoppiamento intrinseco tramite FRET in singola molecola di complessi ATP-sintasici marcati con fluorofori sia sulla subunità ε che sulla subunità γ. Nell’ambito di questa tesi sono stati creati a questo fine alcuni doppi mutanti cisteinici ed è stato messo a punto un protocollo per la loro marcatura con sonde fluorescenti.
Resumo:
Il traffico veicolare è la principale fonte antropogenica di NOx, idrocarburi (HC) e CO e, dato che la sostituzione dei motori a combustione interna con sistemi alternativi appare ancora lontana nel tempo, lo sviluppo di sistemi in grado di limitare al massimo le emissioni di questi mezzi di trasporto riveste un’importanza fondamentale. Sfortunatamente non esiste un rapporto ottimale aria/combustibile che permetta di avere basse emissioni, mentre la massima potenza ottenibile dal motore corrisponde alle condizioni di elevata formazione di CO e HC. Gli attuali sistemi di abbattimento permettono il controllo delle emissioni da sorgenti mobili tramite una centralina che collega il sistema di iniezione del motore e la concentrazione di ossigeno del sistema catalitico (posto nella marmitta) in modo da controllare il rapporto aria/combustibile (Fig. 1). Le marmitte catalitiche per motori a benzina utilizzano catalizzatori “three way” a base di Pt/Rh supportati su ossidi (allumina, zirconia e ceria), che, dovendo operare con un rapporto quasi stechiometrico combustibile/comburente, comportano una minore efficienza del motore e consumi maggiori del 20-30% rispetto alla combustione in eccesso di ossigeno. Inoltre, questa tecnologia non può essere utilizzata nei motori diesel, che lavorano in eccesso di ossigeno ed utilizzano carburanti con un tenore di zolfo relativamente elevato. In questi ultimi anni è cresciuto l’interesse per il controllo delle emissioni di NOx da fonti veicolari, con particolare attenzione alla riduzione catalitica in presenza di un eccesso di ossigeno, cioè in condizioni di combustione magra. Uno sviluppo recente è rappresentato dai catalizzatori tipo “Toyota” che sono basati sul concetto di accumulo e riduzione (storage/reduction), nei quali l’NO viene ossidato ed accumulato sul catalizzatore come nitrato in condizioni di eccesso di ossigeno. Modificando poi per brevi periodi di tempo le condizioni di alimentazione da ossidanti (aria/combustibile > 14,7 p/p) a riducenti (aria/combustibile < 14,7 p/p) il nitrato immagazzinato viene ridotto a N2 e H2O. Questi catalizzatori sono però molto sensibili alla presenza di zolfo e non possono essere utilizzati con i carburanti diesel attualmente in commercio. Obiettivo di questo lavoro di tesi è stato quello di ottimizzare e migliorare la comprensione del meccanismo di reazione dei catalizzatori “storage-reduction” per l’abbattimento degli NOx nelle emissioni di autoveicoli in presenza di un eccesso di ossigeno. In particolare lo studio è stato focalizzato dapprima sulle proprietà del Pt, fase attiva nei processi di storage-reduction, in funzione del tipo di precursore e sulle proprietà e composizione della fase di accumulo (Ba, Mg ed una loro miscela equimolare) e del supporto (γ-Al2O3 o Mg(Al)O). Lo studio è stato inizialmente focalizzato sulle proprietà dei precursori del Pt, fase attiva nei processi di storage-reduction, sulla composizione della fase di accumulo (Ba, Mg ed una loro miscela equimolare) e del supporto (γ-Al2O3 o Mg(Al)O). E’ stata effettuata una dettagliata caratterizzazione chimico-fisica dei materiali preparati tramite analisi a raggi X (XRD), area superficiale, porosimetria, analisi di dispersione metallica, analisi in riduzione e/o ossidazione in programmata di temperatura (TPR-O), che ha permesso una migliore comprensione delle proprietà dei catalizzatori. Vista la complessità delle miscele gassose reali, sono state utilizzate, nelle prove catalitiche di laboratorio, alcune miscele più semplici, che tuttavia potessero rappresentare in maniera significativa le condizioni reali di esercizio. Il comportamento dei catalizzatori è stato studiato utilizzando differenti miscele sintetiche, con composizioni che permettessero di comprendere meglio il meccanismo. L’intervallo di temperatura in cui si è operato è compreso tra 200-450°C. Al fine di migliorare i catalizzatori, per aumentarne la resistenza alla disattivazione da zolfo, sono state effettuate prove alimentando in continuo SO2 per verificare la resistenza alla disattivazione in funzione della composizione del catalizzatore. I principali risultati conseguiti possono essere così riassunti: A. Caratteristiche Fisiche. Dall’analisi XRD si osserva che l’impregnazione con Pt(NH3)2(NO2)2 o con la sospensione nanoparticellare in DEG, non modifica le proprietà chimico-fisiche del supporto, con l’eccezione del campione con sospensione nanoparticellare impregnata su ossido misto per il quale si è osservata sia la segregazione del Pt, sia la presenza di composti carboniosi sulla superficie. Viceversa l’impregnazione con Ba porta ad una significativa diminuzione dell’area superficiale e della porosità. B. Caratteristiche Chimiche. L’analisi di dispersione metallica, tramite il chemiassorbimento di H2, mostra per i catalizzatori impregnati con Pt nanoparticellare, una bassa dispersione metallica e di conseguenza elevate dimensioni delle particelle di Pt. I campioni impregnati con Pt(NH3)2(NO2)2 presentano una migliore dispersione. Infine dalle analisi TPR-O si è osservato che: Maggiore è la dispersione del metallo nobile maggiore è la sua interazione con il supporto, L’aumento della temperatura di riduzione del PtOx è proporzionale alla quantità dei metalli alcalino terrosi, C. Precursore Metallo Nobile. Nelle prove di attività catalitica, con cicli ossidanti e riducenti continui in presenza ed in assenza di CO2, i catalizzatori con Pt nanoparticellare mostrano una minore attività catalitica, specie in presenza di un competitore come la CO2. Al contrario i catalizzatori ottenuti per impregnazione con la soluzione acquosa di Pt(NH3)2(NO2)2 presentano un’ottima attività catalitica, stabile nel tempo, e sono meno influenzabili dalla presenza di CO2. D. Resistenza all’avvelenamento da SO2. Il catalizzatore di riferimento, 17Ba1Pt/γAl2O3, mostra un effetto di avvelenamento con formazione di solfati più stabili che sul sistema Ba-Mg; difatti il campione non recupera i valori iniziali di attività se non dopo molti cicli di rigenerazione e temperature superiori ai 300°C. Per questi catalizzatori l’avvelenamento da SO2 sembra essere di tipo reversibile, anche se a temperature e condizioni più favorevoli per il 1.5Mg8.5Ba-1Pt/γAl2O3. E. Capacità di Accumulo e Rigenerabilità. Tramite questo tipo di prova è stato possibile ipotizzare e verificare il meccanismo della riduzione. I catalizzatori ottenuti per impregnazione con la soluzione acquosa di Pt(NH3)2(NO2)2 hanno mostrato un’elevata capacità di accumulo. Questa è maggiore per il campione bimetallico (Ba-Mg) a T < 300°C, mentre per il riferimento è maggiore per T > 300°C. Per ambedue i catalizzatori è evidente la formazione di ammoniaca, che potrebbe essere utilizzata come un indice che la riduzione dei nitrati accumulati è arrivata al termine e che il tempo ottimale per la riduzione è stato raggiunto o superato. Per evitare la formazione di NH3, sul catalizzatore di riferimento, è stata variata la concentrazione del riducente e la temperatura in modo da permettere alle specie adsorbite sulla superficie e nel bulk di poter raggiungere il Pt prima che l’ambiente diventi troppo riducente e quindi meno selettivo. La presenza di CO2 riduce fortemente la formazione di NH3; probabilmente perché la CO2, occupando i siti degli elementi alcalino-terrosi lontani dal Pt, impedisce ai nitriti/nitrati o all’H2 attivato di percorrere “elevate” distanze prima di reagire, aumentando così le possibilità di una riduzione più breve e più selettiva. F. Tempo di Riduzione. Si è migliorata la comprensione del ruolo svolto dalla concentrazione dell’agente riducente e dell’effetto della durata della fase riducente. Una durata troppo breve porta, nel lungo periodo, alla saturazione dei siti attivi, un eccesso alla formazione di NH3 Attraverso queste ultime prove è stato possibile formulare un meccanismo di reazione, in particolare della fase riducente. G. Meccanismo di Riduzione. La mobilità dei reagenti, nitriti/nitrati o H2 attivato è un elemento fondamentale nel meccanismo della riduzione. La vicinanza tra i siti di accumulo e quelli redox è determinante per il tipo di prodotti che si possono ottenere. La diminuzione della concentrazione del riducente o l’aumento della temperatura concede maggiore tempo o energia alle specie adsorbite sulla superficie o nel bulk per migrare e reagire prima che l’ambiente diventi troppo riducente e quindi meno selettivo.
Resumo:
Lo sviluppo di nuovi processi per la chimica industriale vede come fulcro della ricerca l’armonizzazione tra gli aspetti economici, sociali, ambientali e quelli relativi alla sicurezza; questi ultimi incidono profondamente sull’approccio scientifico indirizzando il chimico moderno verso una chimica focalizzata sulla catalisi e sulla manipolazione di sostanze con basso pericolo intrinseco. Un esempio di obbiettivo da perseguire è quindi lo studio, l’ottimizzazione e la messa in opera di processi che utilizzino bioetanolo come “building-block” per la sintesi di intermedi, quali per esempio acetonitrile, attualmente ottenuto principalmente come sottoprodotto della sintesi industriale dell’acrilonitrile. Il lavoro di tesi, che ha visto coinvolta la mia partecipazione, ha permesso di evidenziare gli aspetti positivi, nonché quelli critici nella reazione di sintesi di acetonitrile mediante ammonossidazione in fase gas a partire da etanolo, in cui come catalizzatore modello è stato utilizzato pirofosfato di vanadile. Investigando il contributo apportato dai vari componenti della miscela di reazione, dei parametri operativi, quali temperatura e tempo di contatto, è stato possibile studiare la reazione in ogni suo aspetto mettendo in evidenza anche i limiti derivanti dall’utilizzo di questo particolare sistema catalitico.
Resumo:
Il lavoro della presente Tesi è stato lo sviluppo della sintesi asimmetrica di aziridine chirali a partire da chetoni α,β-insaturi α-sostituiti, verificando la possibilità di applicare ammine primarie come organocatalizzatori attraverso un meccanismo tandem ione imminio-enammina. Nelle nostre prove le migliori ammine primarie si sono rivelate gli pseudoenantiomeri 9-ammino-9-deossi-epi-idrochinina e idrochinidina, e i migliori acidi per formare il sale catalitico sono stati acido trifluoroacetico (TFA) e acido salicilico. Il fattore chiave per le reazioni di aziridinazione è stata la scelta della molecola sorgente di azoto, che deve avere comportamento nucleofilico nel primo step di aza-Michael (via ione imminio), e comportamento elettrofilico nello step di chiusura del ciclo (via enammina). Le prove preliminari sono state condotte con il sale catalitico formato dalla 9-ammino-9-deossi-epi-idrochinina e TFA in toluene a 50 °C. Migliori risultati sono stati ottenuti sostituendo la sorgente di azoto utilizzata inizialmente e utilizzando il sale catalitico composto da 9-ammino-9-deossi-epi-idrochinidina e acido salicilico in toluene a 50 °C. In questo caso la resa è stata pari a 56% ed eccesso enantiomerico (ee) del 90%. Sfruttando quindi le condizioni ottimizzate inizialmente, abbiamo provato la reazione su altri due chetoni con maggiore ingombro sterico rispetto a quello utilizzato per l’ottimizzazione iniziale del processo. In entrambi i casi la reattività è stata sensibilmente inferiore a quanto atteso, con rese non superiori al 14%. Inoltre anche i valori di ee sono stati poco soddisfacenti. Ipotizziamo che questi risultati deludenti siano causati dall’ingombro sterico della catena in posizione β che impedisce l’avvicinamento del catalizzatore, il quale, non creando un intorno asimmetrico, non crea una distinzione tra le due possibili direzioni di attacco del nucleofilo. Da questi ultimi risultati sembra che la reazione di aziridinazione da noi ottimizzata sia per ora limitata al solo chetone utilizzato nella fase iniziale del lavoro. Al fine di estendere l’applicazione di queste condizioni, nel futuro saranno effettuate prove anche con altri chetoni α,β-insaturi α-sostituiti, ma che non presentino sostituzione in posizione β, dato che abbiamo osservato che essa rappresenta il maggiore limite per la reattività e selettività. Infine sarà importante determinare la configurazione assoluta del prodotto finora ottenuto, mediante spettroscopia ECD e VCD. E’ infatti importante conoscere tutte le caratteristiche chimiche e fisiche di prodotto ottenuto, in modo da avere maggiore conoscenza del processo da noi sviluppato, per poterlo migliorare ed estenderne l’applicabilità in futuro.
Resumo:
L’ossidazione catalitica parziale (CPO) del metano è un processo di elevato interesse scientifico ed industriale, permettendo la produzione su piccola scala di H2 o la produzione di syngas con un rapporto H2/CO = 2, utile per la produzione di metanolo o la sintesi di Fischer-Tropsch di idrocarburi. Inoltre, si possono raggiungere elevate conversioni del metano e selettività in syngas operando a bassi valori del tempo di contatto, riducendo così le dimensioni dei reattori. Tuttavia, gli elevati flussi e le temperature raggiunte nel letto possono condurre rapidamente alla disattivazione del catalizzatore; pertanto, è necessario lo sviluppo di materiali non soltanto attivi, ma anche stabili nelle condizioni di reazione. Lo scopo di questo lavoro è stato lo sviluppo di catalizzatori a base di Rh e ceria, utilizzati sia come pellets che supportati su una schiuma metallica. In particolare, il lavoro è stato focalizzato sulla sintesi, caratterizzazione ed attività catalitica di materiali Rh-CeO2-Al2O3. La presenza di CeO2 può modificare la dispersione del Rh metallico e la sua stabilità nei confronti della sinterizzazione e della formazione del carbone, mentre la stabilità termica è favorita dalla presenza di Al2O3. Poiché queste proprietà e, di conseguenza, le prestazione catalitiche dipendono dalla dimensioni delle particelle di CeO2 sono stati preparati catalizzatori con diverso contenuto di CeO2 (10 e 20 p/p %) ed utilizzando differenti metodi di preparazione per modularne le proprietà. Le sintesi sono effettuate per coprecipitazione e per sintesi con urea per trattamento micronde-idrotermale. Le prestazione dei catalizzatori in pellets sono state analizzate in un impianto di laboratorio operando a bassi valori del tempo di contatto e modificando la temperatura e la concentrazione della miscela gassosa, i.e. sia in condizioni lontane dall’equilibrio termodinamico che in condizioni prossime a quelle industriali. Un catalizzatore con lo stesso contenuto di Rh ed ottenuto da precursori tipo idrotalcite (HT) è stato utilizzato come riferimento. Per incrementare ulteriormente le prestazioni catalitiche, in particolare il trasferimento del calore lungo il letto catalitico, la migliore composizione individuata delle prove precedenti è stata depositata su pellets di una schiuma metallica (FeCrAlloy). E’ stato utilizzato il metodo dell’elettrosintesi per la deposizione di idrossidi di Rh, Ce e Al, ottenendo dopo calcinazione catalizzatori strutturati. Si è valutato l’effetto dei parametri di sintesi, potenziale applicato e tempo, sulle proprietà catalitiche. Anche in questo caso i risultati sono stati confrontati quelli ottenuti con un catalizzatori di riferimento ottenuti da un precursore HT preparati per elettrosintesi.
Resumo:
La green chemistry può essere definita come “l’utilizzo di una serie di principi che riducono o eliminano l’uso o la formazione di sostanze pericolose nella progettazione, produzione e applicazione di prodotti chimici”. . È in questo contesto che si inserisce la metodologia LCA (Life Cycle Assessment), come strumento di analisi e di valutazione. Lo scopo del presente lavoro di tesi è l’analisi degli impatti ambientali associati a processi chimici, ambito ancora poco sviluppato nella letteratura degli studi di LCA. Viene studiato e modellato il ciclo di vita (dall’ottenimento delle materie prime fino alla produzione del prodotto) della reazione di ammonossidazione per la produzione di acrilonitrile, valutando e comparando due alternative di processo: quella tradizionale, che utilizza propilene ( processo SOHIO), e le vie sintetiche che utilizzano propano, ad oggi poco sviluppate industrialmente. Sono stati pertanto creati sei scenari: due da propene (SOHIO FCC, con propene prodotto mediante Fluid Catalytic Cracking, e SOHIO Steam), e quattro da propano (ASAHI, MITSUBISHI, BP povero e ricco in propano). Nonostante la produzione dell’alcano abbia un impatto inferiore rispetto all’olefina, dovuto ai minori stadi di processo, dai risultati emerge che l’ammonossidazione di propano ha un impatto maggiore rispetto a quella del propene. Ciò è dovuto ai processi catalitici che utilizzano propano, che differiscono per composizione e prestazioni, rispetto a quelli da propene: essi risultano meno efficienti rispetto ai tradizionali, comportando maggiori consumi di reattivi in input . Dai risultati emerge che gli scenari da propano presentano maggiori impatti globali di quelli da propene per le categorie Cambiamento climatico, Formazione di materiale e Consumo di combustibili fossili. Invece per la categoria Consumo di metalli un impatto maggiore viene attribuito ai processi che utilizzano propene, per la maggior percentuale di metalli impiegata nel sistema catalitico, rispetto al supporto. L’analisi di contributo, eseguita per valutare quali sono le fasi più impattanti, conferma i risultati. Il maggior contributo per la categoria Consumo di combustibili fossili è ascrivibile ai processi di produzione del propano, dell’ammoniaca e del solfato di ammonio ( legato all’ammoniaca non reagita ). Stessi risultati si hanno per la categoria Cambiamento climatico, mentre per la categoria Formazione di materiale particolato, gli impatti maggiori sono dati dai processi di produzione del solfato di ammonio, del propano e dell’acido solforico (necessario per neutralizzare l’ammoniaca non reagita). Per la categoria Consumo di metalli, il contributo maggiore è dato dalla presenza del catalizzatore. È stata infine eseguita un’analisi di incertezza tramite il metodo Monte Carlo, verificando la riproducibilità dei risultati.
Resumo:
Questo lavoro di tesi ha avuto come obiettivo la preparazione di catalizzatori attivi nella reazione di ossidazione parziale catalitica, CPO, del metano per produrre gas di sintesi. I catalizzatori sono stati preparati tramite sintesi elettrochimica di composti di tipo idrotalcite a base di Rh/Mg/Al utilizzando come supporto schiume metalliche costituite da FeCrAlY. L’impiego di questo tipo di supporto comporta una serie di vantaggi, dallo sviluppo del catalizzatore all’ottimizzazione del processo catalitico in termini di prestazioni catalitiche, diminuzione degli “hot spots” termici, diminuzione delle perdite di carico e costi del catalizzatore. La sintesi del catalizzatore è stata effettuata per mezzo di una cella elettrochimica innovativa, che lavora in flusso, e quindi permette la continua rigenerazione della soluzione di sintesi, a differenza di quanto avviene in una cella elettrochimica standard a singolo comparto. La precipitazione dei composti di tipo idrotalcite si ottiene grazie alla tecnica di elettrogenerazione di basi, ovvero grazie alla generazione di un pH basico all’interno della cella elettrochimica a seguito dell’applicazione di un potenziale catodico. Il pH generato è il parametro più importante e determina la natura e la qualità del materiale depositato. È sorta quindi la necessità di sviluppare un sensore potenziometrico miniaturizzato per la determinazione istantanea del pH durante la sintesi, da installare all’interno della schiuma stessa. È possibile correlare le prestazioni catalitiche dei catalizzatori sintetizzati con la cella elettrochimica in flusso, alle loro caratteristiche di morfologia superficiale ed alla composizione chimica, e confrontare le stesse prestazioni catalitiche con quelle ottenute sintetizzando i catalizzatori con la cella elettrochimica standard a singolo comparto.
Resumo:
Lo studio della deidrogenazione catalitica di idrocarburi affronta uno dei problemi principali per l'applicazione delle fuel cells in aeromobili. La conversione di miscele di idrocarburi in H2 può essere eseguita in loco, evitando le difficoltà di stoccaggio dell'idrogeno: l'H2 prodotto è privo di CO e CO2 e può essere alimentato direttamente alle celle a combustibile per dare energia ai sistemi ausiliari, mentre i prodotti deidrogenati, mantenendo le loro originali caratteristiche possono essere riutilizzati come carburante. In questo un lavoro è stato effettuato uno studio approfondito sulla deidrogenazione parziale (PDH) di diverse miscele di idrocarburi e carburante avio JetA1 desolforato utilizzando Pt-Sn/Al2O3, con l'obiettivo di mettere in luce i principali parametri (condizioni di reazione e composizione di catalizzatore) coinvolti nel processo di deidrogenazione. Inoltre, la PDH di miscele idrocarburiche e di Jet-A1 ha evidenziato che il problema principale in questa reazione è la disattivazione del catalizzatore, a causa della formazione di residui carboniosi e dell’avvelenamento da zolfo. Il meccanismo di disattivazione da residui carboniosi è stato studiato a fondo, essendo uno dei principali fattori che influenzano la vita del catalizzatore e di conseguenza l'applicabilità processo. Alimentando molecole modello separatamente, è stato possibile discriminare le classi di composti che sono coinvolti principalmente nella produzione di H2 o nell’avvelenamento del catalizzatore. Una riduzione parziale della velocità di disattivazione è stata ottenuta modulando l'acidità del catalizzatore al fine di ottimizzare le condizioni di reazione. I catalizzatori Pt-Sn modificati hanno mostrato ottimi risultati in termini di attività, ma soffrono di una disattivazione rapida in presenza di zolfo. Così, la sfida finale di questa ricerca era sviluppare un sistema catalitico in grado di lavorare in condizioni reali con carburante ad alto tenore di zolfo, in questo campo sono stati studiati due nuove classi di materiali: Ni e Co fosfuri supportati su SiO2 e catalizzatori Pd-Pt/Al2O3.